Fine-tuning
RAG还是微调?微软出了一份特定领域大模型应用建设流程指南
检索增强生成(RAG)和微调(Fine-tuning)是提升大语言模型性能的两种常用方法,那么到底哪种方法更好?在建设特定领域的应用时哪种更高效?微软的这篇论文供你选择时进行参考。在构建大语言模型应用程序时通常有两种常见的方法来整合专有和特定领域的数据:检索增强生成和微调。检索增强生成通过外部数据增强提示,而微调将额外的知识整合到模型本身中。不过,对这两种方法的优缺点了解的却不够充分。本文中,来自微软的研究者引入一个新的关注点:为需要特定背景和自适应响应的行业(农业)创建 AI 助手。本文提出了一个全面的大语言模型
2/16/2024 5:27:00 PM
机器之心
- 1
资讯热榜
标签云
人工智能
OpenAI
AIGC
AI
ChatGPT
AI绘画
DeepSeek
机器人
数据
谷歌
大模型
Midjourney
智能
模型
用户
学习
GPT
开源
微软
AI创作
图像
Meta
技术
论文
Stable Diffusion
马斯克
算法
生成式
蛋白质
芯片
Gemini
代码
神经网络
计算
腾讯
研究
Sora
AI设计
3D
开发者
英伟达
GPU
AI for Science
机器学习
场景
预测
华为
伟达
Transformer
Anthropic
模态
深度学习
百度
驾驶
AI视频
文本
苹果
搜索
神器推荐
算力
LLaMA
Copilot
安全
科技
xAI
视频生成
应用
字节跳动
干货合集
2024
人形机器人
具身智能
特斯拉
视觉
亚马逊
语音
大语言模型
AGI
Claude
AI应用场景