分子

100%化学有效,高度类似药物,川大开发数据和知识双驱动的AI分子生成框架

编辑 | 萝卜皮基于深度学习的分子生成在许多领域都有广泛的应用,特别是药物发现。然而,目前的深度生成模型大多数是基于配体的,在分子生成过程中没有考虑化学知识,往往导致成功率相对较低。四川大学的研究团队提出了一种基于结构的分子生成框架,称为 PocketFlow;该框架明确考虑了化学知识,可在蛋白质结合袋内生成新型配体分子,用于基于结构的从头药物设计。在各种计算评估中,PocketFlow 表现出了最先进的性能,生成的分子具有 100% 化学有效且高度类似药物。研究人员将PocketFlow应用于两个与表观遗传调控相

预测所有生物分子,David Baker 团队蛋白质设计新工具 RoseTTAFold All-Atom 登 Science

编辑 | ScienceAI在蛋白领域,华盛顿大学 David Baker 团队又带来了新进展。蛋白质是生命存在不可或缺的分子,但它们不是细胞中唯一的分子,参与生命过程它们必须与其他分子相互协作。近年来,AlphaFold 和 RoseTTAFold 等蛋白质结构预测算法,席卷了结构生物学领域。深度学习方法彻底改变了蛋白质结构预测和设计方式,但目前仅限于纯蛋白质系统。问题是,这些模型忽略了许多影响蛋白质结构的化学类型。「例如,许多生物学涉及蛋白质与小分子相互作用。」华盛顿大学教授 David Baker 说。「这是

受 ChatGPT 启发,结合 Transformer 和 RL-MCTS 进行从头药物设计

编辑 | 萝卜皮通过从头药物设计发现新型治疗化合物是药物研究领域的一项关键挑战。传统的药物发现方法通常资源密集且耗时,这促使科学家探索利用深度学习和强化学习技术力量的创新方法。在这里,美国查普曼大学(Chapman University)的研究人员开发了一种称为 drugAI 的新型药物设计方法,该方法利用编码器-解码器 Transformer 架构与通过蒙特卡罗树搜索(RL-MCTS)进行的强化学习来加快药物发现过程,同时确保生产具有药物样特性和对其靶标具有强结合亲和力的有效小分子。与两种现有的基准方法相比,dr

发现、合成并表征303个新分子,MIT团队开发机器学习驱动的闭环自主分子发现平台

编辑 | X传统意义上,发现所需特性的分子过程一直是由手动实验、化学家的直觉以及对机制和第一原理的理解推动的。随着化学家越来越多地使用自动化设备和预测合成算法,自主研究设备越来越接近实现。近日,来自 MIT 的研究人员开发了由集成机器学习工具驱动的闭环自主分子发现平台,以加速具有所需特性的分子的设计。无需手动实验即可探索化学空间并利用已知的化学结构。在两个案例研究中,该平台尝试了 3000 多个反应,其中 1000 多个产生了预测的反应产物,提出、合成并表征了 303 种未报道的染料样分子。该研究以《Autonom

实现量子化学精度,同时规避几何弛豫瓶颈,深度对比学习用于分子性质有效预测

编辑 | 紫罗数据驱动的深度学习算法可以准确预测高级量子化学分子特性。然而,它们的输入必须限制在与训练数据集相同的量子化学几何弛豫水平,从而限制了它们的灵活性。采用替代的经济有效的构象生成方法会引入域偏移(domain-shift)问题,从而降低预测精度。近日,来自韩国首尔大学的研究人员提出了一种基于深度对比学习的域适应(domain-adaptation)方法,称为局部原子环境对比学习(Local Atomic environment Contrastive Learning,LACL)。LACL 通过比较不同的

改进分子表征学习,清华团队提出知识引导的图 Transformer 预训练框架

编辑 | 紫罗学习有效的分子特征表征以促进分子特性预测,对于药物发现具有重要意义。最近,人们通过自监督学习技术预训练图神经网络(GNN)以克服分子特性预测中数据稀缺的挑战。然而,当前基于自监督学习的方法存在两个主要障碍:缺乏明确的自监督学习策略和 GNN 的能力有限。近日,来自清华大学、西湖大学和之江实验室的研究团队,提出了知识引导的图 Transformer 预训练(Knowledge-guided Pre-training of Graph Transformer,KPGT),这是一种自监督学习框架,通过显著增

更低计算成本,基于单电子约化密度矩阵的机器学习电子结构方法

编辑 | 萝卜皮密度泛函理论(DFT)的定理建立了多体系统的局部外部势与其电子密度、波函数以及单粒子约化密度矩阵之间的双射映射。在此基础上,罗格斯大学(Rutgers University)和纽约大学(New York University)的研究人员证明基于单电子约化密度矩阵(reduced density matrices)的机器学习模型可用于生成替代电子结构方法。该团队为从小分子(如水)到更复杂的化合物(如苯和丙醇)的系统生成局部和混合 DFT、Hartree-Fock 和完整构型相互作用理论的替代品。代理模

生成的分子几乎 100% 有效,用于逆向分子设计的引导扩散模型

编辑 | 绿萝「从头分子设计」是材料科学的「圣杯」。生成深度学习的引入极大地推进了这一方向,但分子发现仍然具有挑战性,而且往往效率低下。以色列理工学院(Technion-Israel Institute of Technology)和意大利威尼斯大学(University Ca’ Foscari of Venice)的研究团队,提出一种用于逆向分子设计的引导扩散模型:GaUDI,它结合了用于属性预测的等变图神经网络和生成扩散模型。研究人员通过将单目标和多目标任务应用于生成的 475,000 个多环芳香族系统数据集,

以「钥匙和锁」方式设计分子,浙大&碳硅智慧开发3D分子生成新模型SurfGen

编辑 | 紫罗高效的从头设计是计算机辅助药物发现的巨大挑战。上个月,浙大侯廷军团队和碳硅智慧合作提出了一种基于蛋白口袋的三维(3D)分子生成模型——ResGen,ResGen 计算效率更高,比之前最好的技术快大约八倍。研究成果发表在《Nature Machine Intelligence》上。近日,该团队又在《Nature Computational Science》发表了其最新研究,提出用于基于结构的分子设计新模型——SurfGen。近年来,真实的结构特异性三维分子生成已经开始出现,但大多数方法将目标结构视为偏向

图生成扩散模型综述:算法与在分子和蛋白质建模上应用

论文简要回顾了扩散模型在图数据上的算法及相关应用的若干研究。论文链接::(Graph-based Data)可以保存现实世界实体(节点)之间丰富多样的关系信息,包括实体间的关联联系、属性特征、以及拓扑结构,已经在社交网络分析、推荐系统、生物信息学等领域有广泛的应用。图生成模型旨在理解和学习现有的图数据分布,并合成新的图样本。这对于研究图数据中潜在的图结构关系,理解现有数据中的模式、关联和隐藏的信息具有重要的意义。生成模型可以用于探索图数据不同尺度的关系、发现社区结构、预测节点属性等。主要的图生成范式分为两类:自回归

以大模型加速新药研发,成本降低70%:一家大厂的「云端」实战

最近几年,AI 加持下的新药研发成为被寄予厚望的赛道之一。从流程上看,药物研发分为药物发现、临床前研究、临床研究、审批与上市四个阶段。医药界有一个「双十定律」的说法 —— 即需要超过 10 年时间、10 亿美元的成本,才有可能成功研发出一款新药。即使如此,也只有约 10% 新药能被批准进入临床期。目前,AI 技术的参与主要集中于药物发现阶段。挑战在于,虽然 AI 技术加快了一部分工作的推进速度,但 AI 技术与药物研发的 “联姻” 并不是一蹴而就的,囿于算法低效、数据割裂、数据安全、算力瓶颈等挑战,药物研发仍然是一

AI for Science:人工智能改变化学领域,机器学习范式加速化学物质发现

随着人工智能技术兴起,在化学领域,传统的基于实验和物理模型的方式逐渐与基于数据的机器学习范式融合。越来越多的用于计算机处理数据表示被开发出来,并不断适应着以生成式为主的统计模型。

可微分骨架树:基于梯度的分子优化算法

这周我们简单介绍一个高效分子优化的方法。该工作由UIUC的Jimeng Sun组合MIT的Connor Coley组合作完成,对应的文章题目是Differentiable Scaffolding Tree for Molecule Optimization[1],被2022年ICLR接受,主要的代码和数据发布在。内容:思路:基于梯度的分子优化分子的可微分骨架树类梯度上升的优化算法优化效果测试由可微性得到的可解释性思路:基于梯度的分子优化在药物发现中,分子优化,即找到具有理想性质的分子结构,是核心的一步。由于化学结构

使用深度学习,通过一个片段修饰进行分子优化

编辑 | 萝卜皮分子优化是药物开发中的关键步骤,可通过化学修饰改善候选药物的预期特性。来自俄亥俄州立大学(The Ohio State University)的研究人员,在分子图上开发了一种新颖的深度生成模型 Modof,用于分子优化。Modof 通过预测分子处的单个断开位点以及在该位点去除和/或添加片段来修饰给定的分子。在 Modof-pipe 中实现了多个相同 Modof 模型的管道,以修改多个断开位置的输入分子。研究人员表明 Modof-pipe 能够保留主要的分子支架,允许控制中间优化步骤并更好地约束分子相

可对药物分子进行表征的几何深度学习

编辑 | 萝卜皮几何深度学习(GDL)基于包含和处理对称信息的神经网络架构。GDL 为依赖于具有不同对称性和抽象级别的分子表示的分子建模应用程序带来了希望。苏黎世联邦理工学院的研究人员对分子 GDL 进行了结构化和统一概述,重点介绍了其在药物发现、化学合成预测和量子化学中的应用。它包含对 GDL 原理的介绍,以及相关的分子表示,例如分子图、网格、曲面和字符串,以及它们各自的属性。讨论了分子科学中 GDL 当前面临的挑战,并尝试预测未来的机会。该综述以「Geometric deep learning on molec

NUS研究团队开发自动化药物生产新技术,「自动化多步合成」成可能

发现和开发用于治疗的新型小分子化合物需要投入大量的时间、精力和资源。新加坡国立大学(NUS)的研究团队开发了一种适合药物小分子的自动化生产方法,为传统化学合成提供了新的思路。该方法可能用于通常通过手动工艺生产的分子,从而减少所需的人力。取得这一技术突破的研究小组由新加坡国立大学化学系助理教授Wu Jie 和新加坡国立大学化学和生物分子工程系副教授Saif A. Khan领导。Liu Chenguang博士(左)和Wu Jie助理教授(右)。(来源:NUS)NUS团队演示了用于癌症治疗的药物分子prexersatib