FedDAT

解密FedDAT:首个多模态异构联邦学习高效微调框架,突破数据异构与通信瓶颈!

FedDAT: An Approach for Foundation Model Finetuning in Multi-Modal Heterogeneous Federated Learning一、 一眼概览FedDAT提出了一种创新的双适配器教师框架(Dual-Adapter Teacher, DAT),结合参数高效微调和互知识蒸馏,解决了多模态异构联邦学习(FL)中的数据异构性问题,并在多个视觉-语言任务基准上取得了最优表现。 二、核心问题如何在多模态联邦学习环境中,在数据异构性和通信预算限制下,实现基础模型的高效分布式微调,以提升视觉-语言任务的性能,是本研究的核心问题。 三、 技术亮点1.
  • 1