FedDAT
解密FedDAT:首个多模态异构联邦学习高效微调框架,突破数据异构与通信瓶颈!
FedDAT: An Approach for Foundation Model Finetuning in Multi-Modal Heterogeneous Federated Learning一、 一眼概览FedDAT提出了一种创新的双适配器教师框架(Dual-Adapter Teacher, DAT),结合参数高效微调和互知识蒸馏,解决了多模态异构联邦学习(FL)中的数据异构性问题,并在多个视觉-语言任务基准上取得了最优表现。 二、核心问题如何在多模态联邦学习环境中,在数据异构性和通信预算限制下,实现基础模型的高效分布式微调,以提升视觉-语言任务的性能,是本研究的核心问题。 三、 技术亮点1.
1/26/2025 9:07:46 AM
萍哥学AI
- 1
资讯热榜
标签云
人工智能
OpenAI
AIGC
AI
ChatGPT
DeepSeek
AI绘画
数据
机器人
谷歌
模型
大模型
Midjourney
智能
用户
学习
开源
GPT
微软
Meta
AI创作
图像
技术
论文
Stable Diffusion
马斯克
Gemini
算法
蛋白质
生成式
芯片
代码
英伟达
腾讯
神经网络
计算
研究
Sora
AI for Science
3D
Anthropic
AI设计
机器学习
GPU
开发者
场景
华为
预测
伟达
Transformer
百度
苹果
深度学习
AI视频
模态
人形机器人
xAI
驾驶
字节跳动
文本
搜索
大语言模型
Claude
Copilot
具身智能
神器推荐
LLaMA
算力
安全
应用
视频生成
科技
视觉
亚马逊
干货合集
2024
AGI
特斯拉
训练
大型语言模型