方法

看破不可见数据集,自我监督学习成为细胞组学新的复杂系统处理利器

编辑丨&自我监督学习 SSL 是一个概念,即数据及其固有的成对关系足以学习有意义的数据表示。 监督学习依赖于成对的观察值和标签 ,而 SSL 仅依赖于输入和样本间关系 。 SSL 已成为一种强大的方法,用于从庞大、未标记的数据集中提取有意义的表示,从而改变计算机视觉和自然语言处理。

逆向设计电路,深度学习开辟全新的自动综合道路

编辑丨&在过去的二十年里,射频、毫米波和亚太赫兹集成电路和系统取得了巨大进步,展示了复杂的相控阵和多输入、多输出 (MIMO) 阵列与芯片级系统。 全新智慧功能的设计与达成离不开芯片的设计,这其中又包含一系列复杂的设计流程。 这些流程构成了构成了集成有源电路元件和无源电磁 (EM) 结构的协同设计和优化。

【Text2sql】低资源场景下Text2SQL方法

SFT的text2sql方法SFT使模型能够遵循输入指令并根据预定义模板进行思考和响应。 如上图是用于通知模型在推理过程中响应角色的角色标签。 后面的内容表示模型需要遵循的指令,而后面的内容传达了当前用户对模型的需求。

数百万晶体数据训练,解决晶体学相位问题,深度学习方法PhAI登Science

编辑 | KX时至今日,晶体学所测定的结构细节和精度,从简单的金属到大型膜蛋白,是任何其他方法都无法比拟的。然而,最大的挑战——所谓的相位问题,仍然是从实验确定的振幅中检索相位信息。丹麦哥本哈根大学研究人员,开发了一种解决晶体相问题的深度学习方法 PhAI,利用数百万人工晶体结构及其相应的合成衍射数据训练的深度学习神经网络,可以生成准确的电子密度图。研究表明,这种基于深度学习的从头算结构解决方案方法,可以以仅 2 埃的分辨率解决相位问题,该分辨率仅相当于原子分辨率可用数据的 10% 到 20%,而传统的从头算方法通

大模型智障检测 + 1:Strawberry 有几个 r 纷纷数不清,最新最强 Llama3.1 也傻了

继分不清 9.11 和 9.9 哪个大以后,大模型又“集体失智”了!数不对单词“Strawberry”中有几个“r”,再次引起一片讨论。GPT-4o 不仅错了还很自信。刚出炉的 Llama-3.1 405B,倒是能在验证中发现问题并改正。比较离谱的是 Claude 3.5 Sonnet,还越改越错了。说起来这并不是最新发现的问题,只是最近新模型接连发布,非常热闹。一个个号称自己数学涨多少分,大家就再次拿出这个问题来试验,结果很是失望。在众多相关讨论的帖子中,还翻出一条马斯克对此现象的评论:好吧,也许 AGI 比我想

准确预测药物-靶点相互作用,江南大学提出深度学习融合GNN新方法MINDG

编辑 | 紫罗药物-靶点相互作用(DTI)预测在药物发现中发挥着重要作用。尽管药物靶点预测的智能计算方法受到了广泛关注,并取得了许多进展,但仍然是一项具有挑战性的任务,需要进一步的研究。为了解决上述挑战,江南大学研究团队提出了一种集成深度学习和图学习的多视图集成学习网络(MINDG)。MINDG 结合图学习和深度学习来提取药物和蛋白质的内在结构信息,以及它们之间的外在关系信息。因此,与之前的方法相比,MINDG 提高了模型预测的性能。相关研究以《MINDG: a drug–target interaction pr

Nature|从1.07亿个分子中发现新抗菌化合物,MIT团队开发用于抗生素发现的DL方法

编辑 | 萝卜皮当前,迫切需要发现新结构类别的抗生素来解决持续存在的抗生素耐药性危机。深度学习方法有助于探索化学空间;这些通常使用黑盒模型并且不提供化学见解。麻省理工学院(MIT)的研究人员开发了一种用于抗生素发现的深度学习方法,并表明它可以从大型化学库中识别出潜在的抗生素。研究人员用该方法从药物再利用中心(包含约 6,000 个分子)中发现了 halicin 和 abaucin,并从 ZINC15 库中的约 1.07 亿个分子中发现了新的抗菌化合物。图示:Yann LeCun 转发了这项研究的 Twitter 报

人工智能为新药铺平道路:几何深度学习方法可以预测合成药物分子的最佳方案

编辑 | 萝卜皮后期功能化是优化候选药物特性的一种经济方法。然而,药物分子的化学复杂性往往使得后期多样化具有挑战性。为了解决这个问题,德国慕尼黑大学(Ludwig-Maximilians-Universität München)、苏黎世联邦理工学院(ETH Zurich)和巴塞尔罗氏制药(Roche Innovation Center Basel)的研究人员开发了基于几何深度学习和高通量反应筛选的后期功能化平台。考虑到硼基化是后期功能化的关键步骤,计算模型预测了不同反应条件下的反应产率,平均绝对误差范围为 4-5%

NeurIPS 2023 | 腾讯AI Lab 18篇入选论文解读

NeurIPS 2023(Neural Information Processing Systems)神经信息处理系统大会是当前全球最负盛名的AI学术会议之一,将于12月10日在美国新奥尔良召开。根据官网邮件显示,本届会议共有12343篇有效论文投稿,接收率为 26.1%,高于 2022 年的 25.6%。今年腾讯 AI Lab 共有18篇论文入选,包含一篇 Spotlight,内容涵盖机器学习、计算机视觉、自然语言处理等方向,以及AI在科研、游戏等领域的融合探索。以下为论文概览。机器学习1.    GADBenc

ICML 2021 | 基于装配的视频无监督部件分割

本文是第三十八届国际机器学习会议(ICML 2021)入选论文《基于装配的视频无监督部件分割(Unsupervised Co-part Segmentation through Assembly)》的解读。 该论文由北京大学陈宝权-刘利斌研究团队与山东大学、北京电影学院未来影像高精尖创新中心合作,提出了一种无监督的图像部件分割方法,创新性地采用了将部件分割过程和部件装配过程相结合的自监督学习思路,利用视频中的运动信息来提取潜在的部件特征,从而实现对物体部件的有意义的分割。

Creator 面对面 | 面向统一的 AI 模型架构和学习方法

随着 AI 的兴起,不同领域的相关研究热火朝天,各种各样的 AI 模型框架和学习方法扑面而来,各不相同。那么是否能有一种统一的模型架构和学习方法来解决不同领域的不同问题呢?让我们来听听怎么看。

基于特征、模型的可解释方案在蚂蚁集团安全风控的应用

可解释性相关算法作为蚂蚁集团提出的“可信AI”技术架构的重要组成部分,已大量应用于蚂蚁集团安全风控的风险识别、欺诈举报审理等场景,取得了一些阶段性的成果。本系列文章,我们将以风控领域具体应用为例,尤其关注领域专家经验和机器学习方法的交互结合,介绍蚂蚁集团特征可解释、图可解释、逻辑可解释等算法方案的探索和落地。专家点评:李琦 清华大学副教授,博士生导师,ACM SIGSAC China副主席  AI可解释性是实现安全可信AI的关键技术,近年来得到学术界和工业界的广泛关注,具有非常好的研究与应用前景。蚂蚁集团在可解释A

AI可解释性及其在蚂蚁安全领域的应用简介

可解释性相关算法作为蚂蚁集团提出的“可信AI”技术架构的重要组成部分,已大量应用于蚂蚁集团安全风控的风险识别、欺诈举报审理等场景,取得了一些阶段性的成果。本系列文章,我们将以风控领域具体应用为例,尤其关注领域专家经验和机器学习方法的交互结合,介绍蚂蚁集团特征可解释、图可解释、逻辑可解释等算法方案的探索和落地。专家点评:沈超 西安交通大学教授、网络空间安全学院副院长AI可解释性是可信AI的重要组成部分,已成为人工智能领域的研究热点。可解释性有助于用户理解系统的决策逻辑并建立信任,从而进一步加快AI技术在领域中的可信应

何为多标签分类?这里有几种实用的经典方法

这可能是最实用的多标签分类小贴士。

经典教材《统计学习导论》第二版来了,新增深度学习等内容,免费下载

经典的《统计学习导论》又出第二版了,相比于第一版,新版增加了深度学习、生存分析、多重测试等内容,可免费下载。
  • 1