反应
准确率达100%,「人机交互」机器学习,驱动有机反应精确原子映射研究
编辑 | X原子到原子映射(Atom-to-atom Mapping,AAM)是识别化学反应前后分子中每个原子位置的任务,这对于理解反应机理非常重要。近年来,越来越多的机器学习模型用于逆合成和反应结果预测,这些模型的质量高度依赖于反应数据集中 AAM 的质量。虽然有一些算法使用图论或无监督学习来标记反应数据集的 AAM,但现有方法是基于子结构 alignments 而不是化学知识来映射原子。在此,来自韩国首尔大学(Seoul National University)和韩国科学技术院(KAIST)的研究团队,提出了一
发现、合成并表征303个新分子,MIT团队开发机器学习驱动的闭环自主分子发现平台
编辑 | X传统意义上,发现所需特性的分子过程一直是由手动实验、化学家的直觉以及对机制和第一原理的理解推动的。随着化学家越来越多地使用自动化设备和预测合成算法,自主研究设备越来越接近实现。近日,来自 MIT 的研究人员开发了由集成机器学习工具驱动的闭环自主分子发现平台,以加速具有所需特性的分子的设计。无需手动实验即可探索化学空间并利用已知的化学结构。在两个案例研究中,该平台尝试了 3000 多个反应,其中 1000 多个产生了预测的反应产物,提出、合成并表征了 303 种未报道的染料样分子。该研究以《Autonom
人工智能为新药铺平道路:几何深度学习方法可以预测合成药物分子的最佳方案
编辑 | 萝卜皮后期功能化是优化候选药物特性的一种经济方法。然而,药物分子的化学复杂性往往使得后期多样化具有挑战性。为了解决这个问题,德国慕尼黑大学(Ludwig-Maximilians-Universität München)、苏黎世联邦理工学院(ETH Zurich)和巴塞尔罗氏制药(Roche Innovation Center Basel)的研究人员开发了基于几何深度学习和高通量反应筛选的后期功能化平台。考虑到硼基化是后期功能化的关键步骤,计算模型预测了不同反应条件下的反应产率,平均绝对误差范围为 4-5%
AI炼金术革新化学:MIT学者使用生成式AI,六秒生成新化学反应
编辑 | 凯霞从「等价交换」的远古炼金术开始,化学一直是一门了解和控制物质间相互作用的学科。人们经过不断解锁和利用新的化学反应,研发出了一系列新材料。在为人们生活提供便利的同时也提升了能量利用效率,促进可持续发展。一个基元化学反应由反应物,过渡态(TS),生成物三者构成。过渡态是化学中至关重要的 3D 结构,被广泛用于理解化学反应机制、估算反应能垒以及探索庞大的反应网络。然而,由于其在反应过程中存在的时间极短(飞秒量级),实验中几乎不可能分离和表征过渡态。常规情况下,人们使用量子化学的计算方法,通过反复求解薛定谔方
使用超图学习梳理出基因组规模代谢网络中缺失的反应
编辑 | 白菜叶基因组规模代谢模型 (GEM) 是预测生物体细胞代谢和生理状态的强大工具。然而,由于学界对代谢过程的了解不完善,即使是精心设计的 GEM 也存在知识缺口。现有的间隙填充方法通常需要表型数据作为输入,来梳理缺失的反应。在实验数据可用之前,科学家仍然缺乏一种快速准确地填补代谢网络缺口的计算方法。斯隆凯特琳癌症中心(Memorial Sloan Kettering Cancer Center)的研究人员提出了一种基于深度学习的方法——CHEbyshev Spectral HyperlInk pREdict
- 1