FairCLIP

CVPR 2024|FairCLIP:首个多模态医疗视觉语言大模型公平性研究

作者 | 哈佛大学、纽约大学团队编辑 | ScienceAI公平性在深度学习中是一个关键问题,尤其是在医疗领域,这些模型影响着诊断和治疗决策。尽管在仅限视觉领域已对公平性进行了研究,但由于缺乏用于研究公平性的医疗视觉-语言(VL)数据集,医疗VL模型的公平性仍未被探索。为了弥补这一研究空白,我们介绍了第一个公平的视觉-语言医疗数据集(FairVLMed),它提供了详细的人口统计属性、真实标签和临床笔记,以便深入检查VL基础模型中的公平性。使用FairVLMed,我们对两个广泛使用的VL模型(CLIP和BLIP2)进
  • 1