EOE
ICML 2024| 大语言模型助力基于CLIP的分布外检测任务
当训练数据集和测试数据集的分布相同时,机器学习模型可以表现出优越的性能。然而在开放世界环境中,模型经常会遇到分布外(Out-of-Distribution, OOD,下称“OOD”)样本,OOD样本可能会导致模型做出不可预测的行为,而错误的后果可能是致命的,尤其是在自动驾驶等高风险场景中 [1, 2]。因此OOD检测对于保障机器学习模型在实际部署中的可靠性至关重要。大多数OOD检测方法 [1, 3] 可以基于训练有素的分布内 (In-Distribution, ID) 分类器有效地检测 OOD 样本。然而,对于不同
7/1/2024 4:41:00 PM
新闻助手
- 1
资讯热榜
标签云
人工智能
OpenAI
AIGC
AI
ChatGPT
DeepSeek
AI绘画
数据
机器人
谷歌
模型
大模型
Midjourney
智能
用户
学习
开源
GPT
微软
Meta
AI创作
图像
技术
论文
Stable Diffusion
马斯克
Gemini
算法
蛋白质
生成式
芯片
代码
英伟达
腾讯
神经网络
计算
研究
Sora
AI for Science
3D
Anthropic
AI设计
机器学习
GPU
开发者
场景
华为
预测
伟达
Transformer
百度
苹果
深度学习
AI视频
模态
人形机器人
xAI
驾驶
字节跳动
文本
搜索
大语言模型
Claude
Copilot
具身智能
神器推荐
LLaMA
算力
安全
应用
视频生成
科技
视觉
亚马逊
干货合集
2024
AGI
特斯拉
训练
大型语言模型