多任务
DARWIN 1.5 来啦!材料设计通用大语言模型,刷新多项实验性质预测记录
编辑丨Science AI材料发现和设计的核心目标是寻找理想的成分和结构,但传统方法,如高通量模拟和机器学习,通常依赖于复杂描述符,过于固定且难以通用,并且无法准确反映真实材料特性,因而限制了实际应用。 GreenDynamic 与来自澳大利亚新南威尔士大学(UNSW),上海人工智能实验室和香港城市大学的团队共同开发了一款名为 DARWIN 1.5 的模型。 不同于传统机器学习方法,DARWIN 基于语言接口微调框架(LIFT,2022 NeurIPS, 本文共同作者),整合了 33 万科学问答和 22 个材料科学任务,为材料属性预测和发现提供了灵活统一的预训练模型,并且成功精准预测了上万种材料的性质数值。
克服奖励欺骗:Meta 发布全新后训练方式 CGPO 编程水平直升 5%,打破 RLHF 瓶颈
CGPO 框架通过混合评审机制和约束优化器,有效解决了 RLHF 在多任务学习中的奖励欺骗和多目标优化问题,显著提升了语言模型在多任务环境中的表现。 CGPO 的设计为未来多任务学习提供了新的优化路径,有望进一步提升大型语言模型的效能和稳定性。 近年来,随着大规模语言模型(LLMs)的发展,特别是通用大模型的应用场景愈发广泛,RLHF 逐渐成为调整和优化语言模型输出的主流方法。
OpenLAM | 深度势能预训练大模型DPA-2发布
在迈向通用大原子模型(Large Atomic Model,LAM)的征途上,深度势能核心开发者团队面向社区,发起 OpenLAM 大原子模型计划。OpenLAM 的口号是“征服元素周期表!”,希望通过建立开源开放的围绕微尺度大模型的生态,为微观科学研究提供新的基础设施,并推动材料、能源、生物制药等领域微尺度工业设计的变革。经过北京科学智能研究院、深势科技、北京应用物理与计算数学研究所等 29 家单位的 42 位合作者的通力协作,深度势能团队近日面向社区发布了深度势能预训练大模型 DPA-2,将成为 OpenLAM
- 1