多模态对齐框架

用语言对齐多模态信息,北大腾讯等提出LanguageBind,刷新多个榜单

北京大学与腾讯等机构的研究者们提出了多模态对齐框架 ——LanguageBind。该框架在视频、音频、文本、深度图和热图像等五种不同模态的下游任务中取得了卓越的性能,刷榜多项评估榜单,这标志着多模态学习领域向着「大一统」理念迈进了重要一步。 在现代社会,信息传递和交流不再局限于单一模态。我们生活在一个多模态的世界里,声音、视频、文字和深度图等模态信息相互交织,共同构成了我们丰富的感知体验。这种多模态的信息交互不仅存在于人类社会的沟通中,同样也是机器理解世界所必须面对的挑战。如何让机器像人类一样理解和处理这种多模态的
  • 1