DNA

斯坦福伯克利重磅发现DNA Scaling Law,Evo荣登Science封面!AI设计DNA/RNA/蛋白质再突破

Is DNA all you need? AI可以实现从分子到基因组尺度的预测和生成任务了! 图片就在刚刚,这项研究登上了Science封面。

登Science封面!基因组基础模型Evo重磅发布,AI解码分子、DNA、RNA和蛋白质

编辑 | X_XChatGPT 可以写小说、编写计算机代码、给出食谱,它的硅片上包含了互联网上的大部分信息。 如果它能对 DNA 做同样的事情会怎么样? 今天,刊登在《Science》封面上一项最新研究,美国 Arc 研究所(Arc Institute)和斯坦福大学的研究团队提出了一种机器学习模型「Evo」,其能够以无与伦比的准确性解码和设计从分子到基因组规模的 DNA、RNA 和蛋白质序列。

湖畔实验室AI加速棉花品种改良:解析近3亿DNA甲基化数据,找到43个关键基因

棉花产量与纤维品质如何受到DNA甲基化调控? 在AI的帮助下,中国棉花育种专家成功破译这一“密码本”,并从中找出有望改良棉花品种的关键基因位点。 近日,由浙江大学棉花精准育种团队、中国农科院生物技术所和湖畔实验室(阿里巴巴达摩院)智慧育种团队组成的联合科研团队,综合运用遗传学、生物大数据和AI技术,构建了涵盖207个品种的棉花全基因组DNA甲基化图谱,鉴定2.87亿个单甲基化多态性(SMP)位点,规模为目前所有作物之最。

1.8B参数,阿里云首个联合DNA、RNA、蛋白质的生物大模型,涵盖16.9W物种

编辑 | 萝卜皮不久之前,Google DeepMind 发布了 AlphaFold3,再次引发了人们对「AI 生命科学」的讨论。在学界,科学家的目标往往是先认识世界,然后在认识的基础上改造世界。但是在生命科学领域,人类对整个生命的理解与认识还如九牛一毛、冰山一角;建立对生命系统的多维度深刻认识是当前人类研究的重要一步,AI 是达成这一步的重要工具。近期,阿里云飞天实验室发布并开源了业界首个联合 DNA、RNA、蛋白质的生物大模型「LucaOne」。这是一种新型预训练基础模型,旨在综合学习遗传和蛋白质组语言,涵

70 亿参数训练,从DNA、RNA、蛋白质到全基因组,生物学通用大模型新标杆

编辑 | 萝卜皮基因组是完整编码 DNA、RNA 和蛋白质的序列,这些序列协调整个生物体的功能。机器学习的进步与全基因组的海量数据集相结合,可以实现生物基础模型,加速复杂分子相互作用的机械理解和生成设计。斯坦福大学(Stanford University)和 Arc Institute 的研究人员开发了 Evo,这是一种基因组基础模型,可进行多模态和多尺度学习,能完成从分子到基因组规模的预测和生成任务。使用基于深度信号处理进步的架构,该团队将 Evo 扩展到 70 亿参数,单核苷酸字节分辨率的上下文长度为 131

只需一行代码,即可轻松驱散基因组分析中DNN产生的数字噪音

编辑 | 白菜叶人工智能已经进入我们的日常生活。它可以是 ChatGPT,也可以是人工智能生成的比萨饼和啤酒广告。虽然我们不能相信人工智能是完美的,但事实证明,有些时候我们根本无法相信人工智能。冷泉港实验室(CSHL)西蒙斯定量生物学中心的助理教授 Peter Koo 发现,在分析 DNA 时,使用流行的计算工具来解释 AI 预测的科学家会收集到太多的「噪音」或额外信息。他找到了解决这个问题的方法。他的团队确定了一个以前被忽视的归因噪声源,该噪声源源于深度神经网络(DNN)如何处理单热编码 DNA。研究人员证明这种

晚上就应该睡觉?新的机器学习技术探索昼夜节律

编辑 | 雪松昼夜节律,如睡眠-觉醒周期,是大多数生物与生俱来的,对地球上的生命至关重要。昼夜时钟在 24 小时日夜周期中协调生物的各项生理变化,会间接影响我们人类的体能水平、健康程度、生存能力。同样,将新陈代谢与日出落日同步等情况也存在于植物中,准确的生物钟有助于调节开花。了解昼夜节律,于植物而言,有助于提高植物的生长和产量;于人类而言,则有可能揭示出治疗疾病的新途径。IBM欧洲研究所与厄尔汉姆研究所的合作团队,描述了一系列基于人工智能(AI)和机器学习(ML)的方法。这些方法可以进行更具成本效益的分析并深入了解
  • 1