DIFFUSSM
丢掉注意力的扩散模型:Mamba带火的SSM被苹果、康奈尔盯上了
替代注意力机制,SSM 真的大有可为?为了用更少的算力让扩散模型生成高分辨率图像,注意力机制可以不要,这是康奈尔大学和苹果的一项最新研究所给出的结论。众所周知,注意力机制是 Transformer 架构的核心组件,对于高质量的文本、图像生成都至关重要。但它的缺陷也很明显,即计算复杂度会随着序列长度的增加呈现二次方增长。这在长文本、高分辨率的图像处理中都是一个令人头疼的问题。为了解决这个问题,这项新研究用一个可扩展性更强的状态空间模型(SSM)主干替代了传统架构中的注意力机制,开发出了一个名为 Diffusion S
12/11/2023 3:55:00 PM
机器之心
- 1
资讯热榜
标签云
人工智能
OpenAI
AIGC
AI
ChatGPT
AI绘画
DeepSeek
机器人
数据
谷歌
大模型
Midjourney
智能
模型
用户
学习
GPT
开源
微软
AI创作
图像
Meta
技术
论文
Stable Diffusion
马斯克
算法
生成式
蛋白质
芯片
Gemini
代码
神经网络
计算
腾讯
研究
Sora
AI设计
3D
开发者
GPU
AI for Science
英伟达
机器学习
场景
预测
华为
伟达
Transformer
Anthropic
模态
深度学习
百度
驾驶
文本
AI视频
苹果
搜索
神器推荐
算力
LLaMA
科技
Copilot
xAI
视频生成
安全
应用
干货合集
字节跳动
2024
人形机器人
具身智能
特斯拉
亚马逊
视觉
语音
Claude
大语言模型
AI应用场景
AGI