调用

准确率68.7%、召回率49.6%,牛津、EPFL等团队开发基于Transformer架构的WES数据体细胞和种系CNV调用程序

编辑 | 萝卜皮拷贝数变异(CNV)与多种遗传性疾病的病因有很大关联。利用全外显子组测序(WES)数据准确检测 CNV 一直是临床上长期追求的目标。尽管最近性能有所提高,但这是不可能的,因为算法大多精度低,专家策划的黄金标准调用集的召回率甚至更低。牛津大学(Oxford University)、瑞士洛桑联邦理工学院(EPFL)以及土耳其毕尔肯大学(Bilkent University)提出了一个基于深度学习的 WES 数据体细胞和种系 CNV 调用程序,名为 ECOLE。基于 Transformer 架构的变体,该
  • 1