电子结构
快多个数量级,清华更高精度、更泛化的深度学习电子结构计算方法登Nature子刊
编辑 | KX两年前,清华大学物理系徐勇、段文晖研究组开发出高效精确的第一性原理电子结构深度学习方法 DeePH,可极大加速电子结构计算。近日,该团队开发了一种准确而有效的实空间重构方法(real-space reconstruction),将 DeepH 方法从原先仅支持原子基组推广至适用于平面波基组,使得 DeepH 方法可与所有密度泛函理论(DFT)程序兼容。而且,该重构方法比传统的基于投影的方法快几个数量级。这给深度学习电子结构计算方法带来了更高的精度和更好的泛化能力,并打通了其利用电子结构大数据作深度学习
百万级原子模拟,从头算精度,北京科学智能研究院提出AI+大尺度电子结构模拟新方法
编辑 | KX在计算材料科学领域,准确高效地模拟材料的电子结构一直是一个非常关键而又极具挑战性的问题。基于密度泛函理论的第一性原理计算方法的高计算需求依然是大尺寸长时间材料模拟所面临的难题。北京科学智能研究院 (AI for Science Institute, Beijing) 提出了一种基于深度学习的高效紧束缚方法,称为 DeePTB,从而高效地表示具有从头算精度的材料电子结构,极大地简化了计算复杂度,并实现百万级大尺寸结构的电子、光电响应性质的计算模拟。当与分子动力学相结合时,DeePTB 可以同时促进原子和
- 1