DeepGlycanSite
30倍于传统方法,中国科学院团队Transformer深度学习模型预测糖-蛋白质作用位点
糖类是自然界中最丰富的有机物质,对生命至关重要。了解糖类如何在生理和病理过程中调节蛋白质,可以为解决关键的生物学问题和开发新的治疗方法提供机遇。然而,糖类分子的多样性和复杂性,对实验识别糖-蛋白质结合以及相互作用的位点提出了挑战。在这里,中国科学院团队开发了一种深度学习模型 DeepGlycanSite,它能够准确预测给定蛋白质结构上的糖结合位点。DeepGlycanSite 将蛋白质的几何和进化特征融入具有 Transformer 架构的深度等变图神经网络中,其性能显著超越了之前的先进方法,并能有效预测各种糖类分
比传统方法高30倍,中国科学院团队Transformer深度学习模型预测糖-蛋白质作用位点
编辑 | 萝卜皮糖类是自然界中最丰富的有机物质,对生命至关重要。了解糖类如何在生理和病理过程中调节蛋白质,可以为解决关键的生物学问题和开发新的治疗方法提供机遇。然而,糖类分子的多样性和复杂性,对实验识别糖-蛋白质结合以及相互作用的位点提出了挑战。在这里,中国科学院团队开发了一种深度学习模型 DeepGlycanSite,它能够准确预测给定蛋白质结构上的糖结合位点。DeepGlycanSite 将蛋白质的几何和进化特征融入具有 Transformer 架构的深度等变图神经网络中,其性能显著超越了之前的先进方法,并能有
- 1