Decoder
Transformers基本原理—Decoder如何进行解码?
一、Transformers整体架构概述Transformers 是一种基于自注意力机制的架构,最初在2017年由Vaswani等人在论文《Attention Is All You Need》中提出。 这种架构彻底改变了自然语言处理(NLP)领域,因为它能够有效地处理序列数据,并且能够捕捉长距离依赖关系。 Transformers整体架构如下:主要架构由左侧的编码器(Encoder)和右侧的解码器(Decoder)构成。
3/10/2025 10:20:00 AM
- 1
资讯热榜
标签云
人工智能
OpenAI
AIGC
ChatGPT
AI
AI绘画
DeepSeek
机器人
数据
谷歌
大模型
智能
Midjourney
用户
学习
模型
GPT
开源
微软
AI创作
图像
Meta
技术
论文
Stable Diffusion
马斯克
算法
生成式
蛋白质
芯片
Gemini
代码
神经网络
计算
腾讯
研究
Sora
AI设计
3D
开发者
GPU
AI for Science
英伟达
机器学习
场景
伟达
预测
华为
Transformer
模态
Anthropic
百度
驾驶
深度学习
文本
AI视频
苹果
搜索
神器推荐
算力
LLaMA
科技
视频生成
安全
应用
xAI
干货合集
Copilot
2024
字节跳动
特斯拉
人形机器人
具身智能
亚马逊
语音
视觉
AI应用场景
写作
AGI
Claude