DDM
何恺明谢赛宁团队步步解构扩散模型,最后竟成经典去噪自编码器
去噪扩散模型(DDM)是当前图像生成技术的一大主流方法。近日,Xinlei Chen、Zhuang Liu、谢赛宁与何恺明四人团队对 DDM 进行了解构研究 —— 通过层层剥离其组件,DDM 的生成能力不断下降,但其表征学习能力却能得到一定的维持。这表明 DDM 的某些组件可能对表征学习作用不大。 对于当前计算机视觉等领域的生成模型,去噪是一种核心方法。这类方法常被称为去噪扩散模型(DDM)—— 它们会学习一个去噪自动编码器(DAE),其能通过一个扩散过程移除多个层级的噪声。这些方法实现了出色的图像生成质量,尤其适
1/29/2024 11:16:00 AM
机器之心
- 1
资讯热榜
标签云
人工智能
OpenAI
AIGC
AI
ChatGPT
DeepSeek
AI绘画
数据
机器人
谷歌
模型
大模型
Midjourney
智能
用户
学习
开源
GPT
微软
Meta
AI创作
图像
技术
论文
Stable Diffusion
马斯克
Gemini
算法
蛋白质
生成式
芯片
代码
英伟达
腾讯
神经网络
计算
研究
Sora
AI for Science
3D
Anthropic
AI设计
机器学习
GPU
开发者
场景
华为
预测
人形机器人
伟达
Transformer
百度
深度学习
AI视频
苹果
模态
xAI
字节跳动
驾驶
文本
搜索
大语言模型
具身智能
Claude
Copilot
神器推荐
LLaMA
算力
安全
应用
视频生成
视觉
科技
亚马逊
大型语言模型
干货合集
特斯拉
2024
AGI
训练