dANN
赛博树突觉醒!AI 仿生革命:更少参数,更强性能,过拟合?不存在的!
编辑丨&人工神经网络(ANN)是大多数深度学习(DL)算法的核心,这些算法可以成功解决图像识别、自动驾驶和自然语言处理等复杂问题。 然而,与能够高效解决类似问题的生物大脑不同,DL 算法需要大量可训练参数,这使得它们能耗高且容易过拟合。 来自希腊研究与技术基金会两位研究员示了一种新的 ANN 架构,它结合了生物树突的结构化连接和受限采样特性,抵消了这些限制。
2/1/2025 3:04:00 PM
ScienceAI
- 1
资讯热榜
标签云
人工智能
AIGC
OpenAI
AI绘画
ChatGPT
机器人
数据
谷歌
智能
学习
大模型
Midjourney
GPT
用户
AI创作
微软
图像
开源
Meta
技术
论文
Stable Diffusion
生成式
算法
蛋白质
芯片
马斯克
计算
神经网络
Gemini
AI设计
代码
Sora
研究
腾讯
3D
开发者
场景
GPU
伟达
预测
模态
英伟达
华为
AI
Transformer
机器学习
文本
驾驶
神器推荐
AI视频
深度学习
干货合集
LLaMA
算力
搜索
苹果
视频生成
2024
AI for Science
科技
百度
应用
AI应用场景
Copilot
具身智能
安全
写作
特斯拉
机器
视觉
字节跳动
AGI
语音
架构
英特尔
prompt
Claude
Anthropic
亚马逊