CVPR 2024
CVPR最佳论文候选 | NeRF新突破,用启发式引导分割去除瞬态干扰物,无需额外先验知识
AIxiv专栏是AI在线发布学术、技术内容的栏目。过去数年,AI在线AIxiv专栏接收报道了2000多篇内容,覆盖全球各大高校与企业的顶级实验室,有效促进了学术交流与传播。如果您有优秀的工作想要分享,欢迎投稿或者联系报道。投稿邮箱:[email protected];[email protected] 论文第一作者为中山大学计算机学院研二硕士生陈家豪,研究方向为神经渲染和三维重建,导师为李冠彬教授。该论文是他的第一个工作。论文通讯作者为中山大学计算机学院、人机物智能融合实验室李冠彬教
7/10/2024 11:10:00 AM
机器之心
导师爆料:这篇CVPR最佳学生论文,从想法到成稿只用一个月,源自业余灵感
按部就班 vs. 好奇心驱动,哪个更容易出研究成果? CVPR 2024 的最佳学生论文,竟然是用一个月的时间写出来的。北京时间 6 月 20 日凌晨,CVPR 2024 正式公布了最佳论文、最佳学生论文等奖项。其中,获得最佳论文的有两篇文章 ——BioCLIP 和 Mip-Splatting。据 Mip-Splatting 论文一作 Zehao Yu 的导师、图宾根大学教授 Andreas Geiger 透露,这篇论文从想法公布到成稿,只用了一个月的时间。而且,他还提到,Zehao Yu 之前参与过多个项目,并
6/24/2024 11:17:00 AM
机器之心
CVPR 2024|让图像扩散模型生成高质量360度场景,只需要一个语言模型
AIxiv专栏是机器之心发布学术、技术内容的栏目。过去数年,机器之心AIxiv专栏接收报道了2000多篇内容,覆盖全球各大高校与企业的顶级实验室,有效促进了学术交流与传播。如果您有优秀的工作想要分享,欢迎投稿或者联系报道。投稿邮箱:[email protected];[email protected]蔡志鹏博士()是美国英特尔研究院的研究员,博士毕业于澳大利亚阿德莱德大学。他的研究兴趣包括鲁棒视觉感知,持续学习和生成模型等。他的工作已在领域顶级会议杂志上发表超过15篇。其中5篇文章被选
6/11/2024 2:36:00 PM
机器之心
329篇图像、视频生成论文,今年CVPR最火的研究主题是这些
图像与视频合成、3D 视觉、人体行为识别、视觉与语言推理等研究方向论文最多,属于最热门的方向,体现当前学界对视觉生成、三维感知、人机交互等方向的高度重视。另外,多模态学习、以人为本的设计和自适应机器人可能构成人形机器人的未来。一年一度的计算机视觉和模式识别会议(CVPR)一直是 CV 界前沿研究的灯塔。CVPR 2024 录用结果显示,今年共有 2719 篇论文被接收,录用率 23.6%。那么大模型时代,今年的研究主题有哪些变化?最近,乔治亚理工学院计算机学院(College of Computing, Georg
6/9/2024 12:47:00 AM
机器之心
CVPR 2024 | 合成视频数据集里只有单人数据?M3Act破解人群行为标注难题
AIxiv专栏是机器之心发布学术、技术内容的栏目。过去数年,机器之心AIxiv专栏接收报道了2000多篇内容,覆盖全球各大高校与企业的顶级实验室,有效促进了学术交流与传播。如果您有优秀的工作想要分享,欢迎投稿或者联系报道。投稿邮箱:[email protected];[email protected]论文链接:::M3Act: Learning from Synthetic Human Group Activities引言通过视觉信息识别、理解人群的行为是视频监测、交互机器人、自动驾驶
6/3/2024 11:47:00 AM
机器之心
大模型时代的计算机视觉!CVPR 2024线上论文分享会启动
自从 OpenAI 发布 ChatGPT 以来,整个技术社区对大模型、AIGC的关注越来越高。今年年初,Sora 的横空出世更是将视频生成的热度推向了一个新的高潮。大模型时代,计算机视觉领域的热点话题也在不断的发生着变化。面对应接不暇的研究,我们如何才能在最快的时间了解 AI 领域的最新科研成果与发展趋势?参加顶会论文分享会就是一个不错的选择。作为计算机视觉(CV)领域的顶级会议,CVPR 每年都会吸引大量研究机构和高校参会。据统计,今年共提交了 11532 份论文,2719 篇被接收,录用率为 23.6%。为了给
5/8/2024 10:42:00 AM
机器之心
CVPR 2024 | 借助神经结构光,浙大实现动态三维现象的实时采集重建
AIxiv专栏是机器之心发布学术、技术内容的栏目。过去数年,机器之心AIxiv专栏接收报道了2000多篇内容,覆盖全球各大高校与企业的顶级实验室,有效促进了学术交流与传播。如果您有优秀的工作想要分享,欢迎投稿或者联系报道。投稿邮箱:[email protected];[email protected]。对于烟雾等动态三维物理现象的高效高质量采集重建是相关科学研究中的重要问题,在空气动力学设计验证,气象三维观测等领域有着广泛的应用前景。通过采集重建随时间变化的三维密场度序列,可以帮助科学
5/6/2024 11:19:00 AM
机器之心
CVPR 2024 | 文本一键转3D数字人骨骼动画,阿尔伯塔大学提出MoMask框架
AIxiv专栏是机器之心发布学术、技术内容的栏目。过去数年,机器之心AIxiv专栏接收报道了2000多篇内容,覆盖全球各大高校与企业的顶级实验室,有效促进了学术交流与传播。如果您有优秀的工作想要分享,欢迎投稿或者联系报道。投稿邮箱:[email protected];[email protected]。想象一下,你仅需要输入一段简单的文本描述,就可以生成对应的 3D 数字人动画的骨骼动作。而以往,这通常需要昂贵的动作捕捉设备或是专业的动画师逐帧绘制。这些骨骼动作可以进一步的用于游戏开发
4/29/2024 2:32:00 PM
机器之心
CVPR 2024 | 擅长处理复杂场景和语言表达,清华&博世提出全新实例分割网络架构MagNet
AIxiv专栏是机器之心发布学术、技术内容的栏目。过去数年,机器之心AIxiv专栏接收报道了2000多篇内容,覆盖全球各大高校与企业的顶级实验室,有效促进了学术交流与传播。如果您有优秀的工作想要分享,欢迎投稿或者联系报道。投稿邮箱:[email protected];[email protected]。指代分割 (Referring Image Segmentation,RIS) 是一项极具挑战性的多模态任务,要求算法能够同时理解精细的人类语言和视觉图像信息,并将图像中句子所指代的物体
4/26/2024 2:28:00 PM
机器之心
CVPR 2024 | 基于MoE的通用图像融合模型,添加2.8%参数完成多项任务
AIxiv专栏是机器之心发布学术、技术内容的栏目。过去数年,机器之心AIxiv专栏接收报道了2000多篇内容,覆盖全球各大高校与企业的顶级实验室,有效促进了学术交流与传播。如果您有优秀的工作想要分享,欢迎投稿或者联系报道。投稿邮箱:[email protected];[email protected]。论文链接:::Task-Customized Mixture of Adapters for General Image Fusion
4/24/2024 11:10:00 AM
机器之心
CVPR 2024 | 仅需文本或图像提示,新框架CustomNeRF精准编辑3D场景
美图影像研究院(MT Lab)与中国科学院信息工程研究所、北京航空航天大学、中山大学共同提出了 3D 场景编辑方法 ——CustomNeRF,同时支持文本描述和参考图像作为 3D 场景的编辑提示,该研究成果已被 CVPR 2024 接收。自 2020 年神经辐射场 (Neural Radiance Field, NeRF) 提出以来,将隐式表达推上了一个新的高度。作为当前最前沿的技术之一,NeRF 快速泛化应用在计算机视觉、计算机图形学、增强现实、虚拟现实等领域,并持续受到广泛关注。有赖于易于优化和连续表示的特点,
4/15/2024 8:59:00 AM
机器之心
CVPR 2024 | 分割一切模型SAM泛化能力差?域适应策略给解决了
第一个针对「Segment Anything」大模型的域适应策略来了!相关论文已被CVPR 2024 接收。引言大语言模型(LLMs)的成功激发了计算机视觉领域探索分割基础模型的兴趣。这些基础分割模型通常通过 Prompt Engineer 来进行 zero/few 图像分割。其中,Segment Anything Model(SAM)是最先进的图像分割基础模型。 图 SAM 在多个下游任务上表现不佳但是最近的研究表明,SAM 在多种下游任务中并非具有很强的
4/9/2024 2:39:00 PM
机器之心
二次元专用超分AI模型APISR:在线可用,入选CVPR
《龙珠》、《神奇宝贝》、《新世纪福音战士》等上个世纪开播的动漫是很多人童年回忆的一部分,它们曾给我们带来了充满了热血、友情与梦想的视觉之旅。某些时候,我们会突然有重温这些童年回忆的冲动,但我们却可能会略带遗憾地发现这些童年回忆的分辨率非常低,根本无法在客厅的 4K 大屏电视上创造出良好的视觉体验,以至于可能阻碍我们与在高分辨率数字世界中成长的孩子分享这些童年回忆。针对这样的困扰(以及潜在的市场),一种做法是由动画公司制作重制版,但这项任务的人力和资金成本都不低。而随着多模态人工智能的性能日益强大,采用基于 AI 的
4/7/2024 2:22:00 PM
机器之心
CVPR 2024满分论文,英伟达开源BOP排行榜6D物体姿态第一名方法
物体姿态估计对于各种应用至关重要,例如机器人操纵和混合现实。实例级方法通常需要纹理 CAD 模型来生成训练数据,并且不能应用于测试时未见过的新物体;而类别级方法消除了这些假设(实例训练和 CAD 模型),但获取类别级训练数据需要应用额外的姿态标准化和检查步骤。为了解决这些问题,来自英伟达的研究团队提出了一个统一的框架,称为 FoundationPose,它在基于模型和无模型设置下,使用 RGBD 图像对新颖物体进行姿态估计和跟踪。如下图所示,FoundationPose 优于现有专门针对这四项任务中每一项的 SOT
4/6/2024 11:26:00 PM
机器之心
CVPR 2024|生成不了光线极强的图片?微信视觉团队有效解决扩散模型奇点问题
扩散模型凭借其在图像生成方面的出色表现,开启了生成式模型的新纪元。诸如 Stable Diffusion,DALLE,Imagen,SORA 等大模型如雨后春笋般涌现,进一步丰富了生成式 AI 的应用前景。然而,当前的扩散模型在理论上并非完美,鲜有研究关注到采样时间端点处未定义的奇点问题。此外,奇点问题在应用中导致的平均灰度等影响生成图像质量的问题也一直未得到解决。为了解决这一难题,微信视觉团队与中山大学合作,联手探究了扩散模型中的奇点问题,并提出了一个即插即用的方法,有效解决了初始时刻的采样问题。该方法成功解决了
3/28/2024 2:38:00 PM
机器之心
CVPR 2024 | 零样本6D物体姿态估计框架SAM-6D,向具身智能更进一步
物体姿态估计在许多现实世界应用中起到至关重要的作用,例如具身智能、机器人灵巧操作和增强现实等。在这一领域中,最先受到关注的任务是实例级别 6D 姿态估计,其需要关于目标物体的带标注数据进行模型训练,使深度模型具有物体特定性,无法迁移应用到新物体上。后来研究热点逐步转向类别级别 6D 姿态估计,用于处理未见过的物体,但要求该物体属于已知的感兴趣类别。而零样本 6D 姿态估计是一种更具泛化性的任务设置,给定任意物体的 CAD 模型,旨在场景中检测出该目标物体,并估计其 6D 姿态。尽管其具有重要意义,这种零样本的任务设
3/25/2024 11:14:00 AM
机器之心
提升生成式零样本学习能力,视觉增强动态语义原型方法入选CVPR 2024
虽然我从来没见过你,但是我有可能「认识」你 —— 这是人们希望人工智能在「一眼初见」下达到的状态。为了达到这个目的,在传统的图像识别任务中,人们在带有不同类别标签的大量图像样本上训练算法模型,让模型获得对这些图像的识别能力。而在零样本学习(ZSL)任务中,人们希望模型能够举一反三,识别在训练阶段没有见过图像样本的类别。生成式零样本学习(GZSL)是实现零样本学习的一种有效方法。在生成式零样本学习中,首先需要训练一个生成器来合成未见类的视觉特征,这个生成过程是以前面提到的属性标签等语义描述为条件驱动的。有了生成的视觉
3/15/2024 2:59:00 PM
机器之心
AI图片橡皮擦来了,清华&阿里合作推出「概念半透膜」模型,还能改头换面
一只橘猫,减去「猫」,它会变成什么?第一步在常见 AI 作图模型输入「一只胖胖的像面包的橘猫」,画出一只长得很像面包的猫猫,然后用概念半透膜 SPM 技术,将猫猫这个概念擦掉,结果它就失去梦想变成了一只面包。上图 1 是更多的猫猫图失去猫这个概念后的结果。 图 1 概念半透膜 SPM 针对不同的「猫」图擦除猫概念后的效果下图 2 到图 6 展示了更多的示例。 图 2 失去梦想变成一只面包表情包
3/13/2024 2:29:00 PM
机器之心
资讯热榜
标签云
人工智能
OpenAI
AIGC
AI
ChatGPT
DeepSeek
AI绘画
数据
机器人
谷歌
模型
大模型
Midjourney
智能
用户
学习
开源
GPT
微软
Meta
AI创作
图像
技术
论文
Stable Diffusion
马斯克
Gemini
算法
蛋白质
生成式
芯片
代码
英伟达
腾讯
神经网络
计算
研究
Sora
AI for Science
3D
Anthropic
AI设计
机器学习
GPU
开发者
场景
华为
预测
伟达
Transformer
百度
人形机器人
苹果
深度学习
AI视频
模态
字节跳动
xAI
驾驶
文本
搜索
大语言模型
Claude
Copilot
具身智能
神器推荐
LLaMA
算力
安全
应用
视频生成
科技
视觉
亚马逊
干货合集
2024
AGI
特斯拉
大型语言模型
训练