COCONUT
Meta AI的COCONUT:无需语言即可思考的 AI 方法
译者 | 涂承烨审校 | 重楼当研究人员首次发现大型语言模型(LLMS)可以通过思维链提示一步一步地“思考”时,这是一个突破性的时刻! 我们终于可以窥视这些黑盒子的推理过程了。 但如果我告诉你,让人工智能模型用自然语言思考可能会阻碍它们的发展呢?
田渊栋团队论文火了!连续思维链优于CoT,打开LLM推理新范式
一个非常简单的更改,就能提高 LLM 推理能力。 在认知科学领域,关于语言是用于思考还是用于交流的辩论一直持续。 随着 LLM 和 CoT 的兴起,语言已经成为机器推理的默认媒介 —— 但它真的是最佳方法吗?
CVPR 2024 | 字节提出新一代数据集COCONut,比COCO粒度分割更密集
AIxiv专栏是机器之心发布学术、技术内容的栏目。过去数年,机器之心AIxiv专栏接收报道了2000多篇内容,覆盖全球各大高校与企业的顶级实验室,有效促进了学术交流与传播。如果您有优秀的工作想要分享,欢迎投稿或者联系报道。投稿邮箱:[email protected];[email protected]。随着人工智能的发展,语言模型和生成模型获得了大量的成功并且在设计模型的过程中,模型的参数量也越来越大。对于细粒度理解任务,模型参数量也同样在增加。然而目前现有的数据集存在规模和精度的矛盾
- 1