材料学
Nature重磅:微软生成式AI材料设计工具,稳定性提升2倍,实验验证误差低于20%!
编辑 | 2049材料创新是推动技术进步的关键驱动力之一。 从 20 世纪 80 年代锂钴氧化物的发现到如今的锂离子电池技术,材料科学的每一次突破都深刻影响着我们的日常生活。 然而,传统的材料发现方法依赖于耗时且昂贵的实验试错过程,而计算筛选方法虽然加速了这一过程,但仍然受限于已知材料的数量。
ScienceAI 2024「AI+材料&化学」专题年度回顾
编辑 | 2049在数字化转型的背景下,人工智能技术正在从根本上改变化学与材料科学的研究范式。 2024年,这场技术革新在多个领域展现其变革力量。 在分子设计领域,基于图神经网络(GNN)和 Transformer 架构的深度学习模型,结合分子动力学模拟,实现了分子性质的精确预测与优化。
机械系统也能自主学习!密歇根大学团队构建了全新数学框架,登上Nature Communications
编辑丨&受人脑复杂运作的启发,神经网络已经彻底改变了各个领域的生产研究现状。 然而,考虑到基于计算机的神经网络需求的大量计算与极高能耗,特别是传统数字处理器的能源效率,机械神经网络的发展逐步被提上日程。 在光学神经网络中,波-物质相互作用被用来实现机器学习,类似的思路也可以被用来建立机械神经网络(MNN)的学习框架。
LLM学习原子「结构语言」,生成未知化合物的晶体结构,登Nature子刊
编辑 | 萝卜皮生成合理的晶体结构通常是预测材料化学成分及其性质的第一步,但当前大多数预测方法计算成本高,制约了创新进程。 通过使用优质生成的候选结构来预测晶体结构,可以突破这一瓶颈。 在最新的研究中,英国雷丁大学(University of Reading)的研究人员介绍了 CrystaLLM,这是一种基于晶体学信息文件 (CIF) 格式的自回归大型语言建模 (LLM) 的多功能晶体结构生成方法。
AI 驱动化学空间探索,大语言模型精准导航,直达目标分子
作者 | 「深度原理」陆婕妤编辑 | ScienceAI现代科学研究中,化学空间的探索是化学发现和材料科学的核心挑战之一。 过渡金属配合物(TMCs)的设计中,由金属和配体组成的庞大化学空间为多目标优化的搜索带来了难度。 为了解决这一问题,来自「深度原理」 (Deep Principle) 和康奈尔大学的研究者们开发了一种名为 LLM-EO(Large Language Model for Evolutionary Optimization)的新型工作流程算法,释放大型语言模型(LLM)的生成和预测潜能,显著提高了化学空间探索的效率。
1.1亿个结构DFT计算,Meta推出OMat24,AI驱动材料发现开源化
编辑 | KX材料科学家发现新材料通常需要耗费很长时间。他们需要进行大量的数字运算、属性研究并运行大量的模拟。与其他计算方法或反复试验相比,AI 可以更有效地探索化学空间,加速材料的发现和设计。
快多个数量级,清华更高精度、更泛化的深度学习电子结构计算方法登Nature子刊
编辑 | KX两年前,清华大学物理系徐勇、段文晖研究组开发出高效精确的第一性原理电子结构深度学习方法 DeePH,可极大加速电子结构计算。近日,该团队开发了一种准确而有效的实空间重构方法(real-space reconstruction),将 DeepH 方法从原先仅支持原子基组推广至适用于平面波基组,使得 DeepH 方法可与所有密度泛函理论(DFT)程序兼容。而且,该重构方法比传统的基于投影的方法快几个数量级。这给深度学习电子结构计算方法带来了更高的精度和更好的泛化能力,并打通了其利用电子结构大数据作深度学习
新「AI科学家」?MIT整合多智能体,实现材料科学研究自动化
编辑 | 萝卜皮人工智能(AI)的一个关键挑战是:如何创建能够通过「探索新领域」、「识别复杂模式」和「揭示海量科学数据中隐藏的联系」来自主推进科学理解的系统。在最近的工作中,麻省理工学院(Massachusetts Institute of Technology)原子与分子力学实验室(LAMM)的研究人员提出了 SciAgents,一种可以整合利用三个核心概念的方法:(1)使用大规模本体知识图谱来组织和互连不同的科学概念;(2)一套大型语言模型(LLM)和数据检索工具;(3)具有现场学习能力的多智能体(agent)
性能强11倍,佐治亚理工、清华团队用AI辅助发现储能新材料,登Nature子刊
编辑 | 萝卜皮静电电容器是国防、航空、能源和交通领域先进电力系统中的关键储能元件。能量密度是静电电容器的品质因数,主要由介电材料的选择决定。大多数工业级聚合物介电材料都是柔性聚烯烃或刚性芳族化合物,具有高能量密度或高热稳定性,但不能同时具有这两种特性。在这里,佐治亚理工学院(Georgia Institute of Technology)、康涅狄格大学(University of Connecticut)以及清华大学的研究团队利用人工智能(AI)、聚合物化学和分子工程,来发现聚降冰片烯和聚酰亚胺系列中的一系列电介
DeepMind开发用于量子化学计算的神经网络变分蒙特卡罗
编辑 | X近百年前,狄拉克提出正电子概念,如今在医学物理、天体物理及材料科学等多个领域都具有技术相关性。然而,正电子-分子复合物基态性质的量子化学计算具有挑战性。在此,DeepMind 和伦敦帝国理工学院的研究人员,使用最近开发的费米子神经网络 (FermiNet) 波函数来解决这个问题,该波函数不依赖于基组。研究发现 FermiNet 可以在一系列具有各种不同定性正电子结合特性的原子和小分子中产生高度精确的、在某些情况下是最先进的基态能量。研究人员计算了具有挑战性的非极性苯分子的结合能,发现与实验值高度一致,并
Hinton任顾问,「AI+材料」初创CuspAI宣布获得3000万美元种子轮融资
编辑 | 仙人掌随着人工智能加速材料设计过程,碳捕获材料创新正在发生变革。一家新公司刚刚走出隐身模式,宣布获得 3000 万美元的种子轮融资,利用人工智能快速生成和评估大量新颖的结构来设计新材料。这家名为 CuspAI 的初创公司位于剑桥和阿姆斯特丹,由人工智能领域的知名专业人士创立,包括前微软研究院和高通杰出科学家兼副总裁 Max Welling 教授,以及参与谷歌和巴斯夫深度技术商业化的化学家 Chad Edwards 博士。被称为「人工智能教父」的 Geoffrey Hinton 将担任董事会顾问。据该初创公
计算效率提升100倍以上,上交李金金团队开发基于Transformer的大模型用于从头算分子动力学
作者 | 陶科豪编辑 | 白菜叶精确模拟原子与分子的动态行为对于开发新一代高效能材料至关重要。然而,传统的从头算分子动力学(AIMD)模拟虽然提供了高精度的预测能力,但由于其高昂的计算成本和漫长的模拟时间,大大限制了研究的进度。例如,完成一个含 100 个原子的材料系统的 30 皮秒模拟,常常需要数月时间,这对于需要快速迭代和优化的新材料研发构成了巨大挑战。在这种背景下,一个能够显著加快这一过程的人工智能模型具有重要价值。面对这些挑战,上海交通大学人工智能与微结构实验室(AIMS-lab)开发了名为 T-AIMD
- 1