变量
NeurIPS 2024 | 用LLM探寻隐秘的因果世界
因果发现的现实挑战:稀缺的高级变量寻找并分析因果关系是科学研究中的重要一环,而现有的因果发现算法依赖由专家预先定义的高级变量。 现实场景中的原始数据往往是图片、文本等高维非结构化数据, 结构化的高级变量是十分稀缺的,导致现有的因果发现和学习算法难以用于至更广泛的数据。 因此,香港浸会大学与MBZUAI、卡内基梅隆大学、香港中文大学、悉尼大学以及墨尔本大学合作发表论文《Discovery of the Hidden World with Large Language Models》,提出了一个名为 COAT 的新型框架,旨在利用大型语言模型和因果发现方法的优势,突破传统因果发现方法的局限性,更有效地在现实世界中定义高级变量、理解因果关系。
2/8/2025 4:56:00 PM
新闻助手
提前预警平均6-7天,基于实时观测数据的时空信息转化学习的地震前兆预警
编辑 | 绿萝2023年9月5日,国际学术期刊《Proceedings of the National Academy of Sciences of the United States of America》在线发表了中国科学院生物化学与细胞生物学研究所陈洛南研究组与华南理工大学数学学院刘锐研究组合作的题为「Earthquake alerting based on spatial geodetic data by spatiotemporal information transformation learning」
9/8/2023 10:45:00 AM
ScienceAI
- 1
资讯热榜
标签云
人工智能
OpenAI
AIGC
AI
ChatGPT
DeepSeek
AI绘画
数据
机器人
谷歌
模型
大模型
Midjourney
智能
用户
学习
开源
GPT
微软
Meta
AI创作
图像
技术
论文
Stable Diffusion
马斯克
Gemini
算法
蛋白质
生成式
芯片
代码
英伟达
腾讯
神经网络
计算
研究
Sora
AI for Science
3D
Anthropic
AI设计
机器学习
GPU
开发者
场景
华为
预测
伟达
Transformer
百度
苹果
人形机器人
深度学习
AI视频
模态
xAI
驾驶
字节跳动
文本
搜索
大语言模型
Claude
Copilot
具身智能
神器推荐
LLaMA
算力
安全
应用
视频生成
科技
视觉
亚马逊
干货合集
2024
AGI
特斯拉
训练
大型语言模型