变构
Nature子刊,川大团队机器学习结合MD,预测蛋白质变构,助力药物研发
编辑 | 萝卜皮变构药物为现代药物设计提供了一条新途径。然而,识别隐蔽的变构位点是一项艰巨的挑战。四川大学蒲雪梅教授、邵振华研究员团队提出了一种先进的计算流程,结合残基驱动的混合机器学习模型(RHML)和分子动力学(MD)模拟,成功识别出了变构位点、变构调节剂,并揭示了它们的调控机制。具体而言,在 β2 肾上腺素能受体(β2AR)中,团队发现了位于残基 D79^2.50、F282^6.44、N318^7.45和S319^7.46 附近的一个新的变构位点及潜在调节剂 ZINC5042。通过分子力学/广义 Born 表
9/25/2024 4:22:00 PM
ScienceAI
- 1
资讯热榜
标签云
人工智能
AIGC
OpenAI
AI绘画
ChatGPT
机器人
数据
谷歌
智能
Midjourney
大模型
学习
GPT
DeepSeek
用户
AI创作
微软
图像
AI
开源
Meta
技术
论文
Stable Diffusion
算法
生成式
蛋白质
马斯克
芯片
Gemini
计算
神经网络
代码
AI设计
Sora
研究
腾讯
3D
开发者
GPU
场景
伟达
英伟达
预测
机器学习
华为
模态
Transformer
模型
文本
驾驶
神器推荐
深度学习
AI视频
AI for Science
苹果
搜索
干货合集
LLaMA
视频生成
算力
百度
2024
Copilot
科技
应用
Anthropic
特斯拉
AI应用场景
安全
具身智能
写作
机器
字节跳动
AGI
视觉
架构
语音
DeepMind
API