Attention Mechanism

无问芯穹提出混合稀疏注意力方案MoA,加速长文本生成,实现最高8倍吞吐率提升

随着大语言模型在长文本场景下的需求不断涌现,其核心的注意力机制(Attention Mechanism)也获得了非常多的关注。 注意力机制会计算一定跨度内输入文本(令牌,Token)之间的交互,从而实现对上下文的理解。 随着应用的发展,高效处理更长输入的需求也随之增长 [1][2],这带来了计算代价的挑战:注意力高昂的计算成本和不断增长的键值缓存(KV-Cache)代价。
  • 1