ALiBi算法
克服机器学习转换器的局限性——从位置嵌入到RoPE和ALiBi方法
译者 | 朱先忠审校 | 重楼引言近年来开发出的机器学习模型的指数级进步与转换器架构的出现密切相关。 以前,人工智能科学家必须先为手头的每项任务选择架构,然后再进行超参数优化以获得最佳性能。 限制科学家们潜力的另一个挑战是难以处理数据的长期依赖性,难以解决梯度消失、长序列上下文丢失以及因局部约束而无法捕获全局上下文的问题。
11/12/2024 8:20:25 AM
朱先忠
- 1
资讯热榜
标签云
人工智能
OpenAI
AIGC
AI
ChatGPT
DeepSeek
AI绘画
数据
机器人
谷歌
模型
大模型
Midjourney
智能
用户
学习
GPT
开源
微软
Meta
AI创作
图像
技术
论文
Stable Diffusion
马斯克
Gemini
算法
蛋白质
生成式
芯片
代码
英伟达
神经网络
腾讯
计算
研究
Sora
AI for Science
AI设计
3D
机器学习
GPU
Anthropic
开发者
场景
华为
预测
伟达
Transformer
深度学习
模态
百度
AI视频
苹果
驾驶
文本
搜索
Copilot
xAI
神器推荐
具身智能
LLaMA
人形机器人
算力
安全
大语言模型
Claude
字节跳动
应用
视频生成
科技
视觉
干货合集
2024
AGI
亚马逊
特斯拉
架构
DeepMind