Agent4Rec

Agent4Rec来了!大模型智能体构成推荐系统模拟器,模拟真实用户交互行为

一直以来,推荐系统领域面临模型线上线下效果差距大的痛点问题,昂贵的线上 A/B 测试成本使得广大研究人员望而却步,也造成学术界的推荐系统研究与工业界的实际应用间的巨大割裂。随着大语言模型展现出类人的逻辑推理和理解能力,基于大语言模型的智能体(Agent)能否模拟真实用户的交互行为,从而构建一个可靠的虚拟推荐 A/B 测试场景,以帮助推荐研究的应用落地,是一个急迫、重要且极具经济价值的问题。为了回答这个问题,来自新加坡国立大学 NExT 实验室团队构建了 Agent4Rec,一个由 1000 名 agents 构
  • 1