Aaren
Bengio等人新作:注意力可被视为RNN,新模型媲美Transformer,但超级省内存
序列建模的进展具有极大的影响力,因为它们在广泛的应用中发挥着重要作用,包括强化学习(例如,机器人和自动驾驶)、时间序列分类(例如,金融欺诈检测和医学诊断)等。在过去的几年里,Transformer 的出现标志着序列建模中的一个重大突破,这主要得益于 Transformer 提供了一种能够利用 GPU 并行处理的高性能架构。然而,Transformer 在推理时计算开销很大,主要在于内存和计算需求呈二次扩展,从而限制了其在低资源环境中的应用(例如,移动和嵌入式设备)。尽管可以采用 KV 缓存等技术提高推理效率,但 T
5/25/2024 6:19:00 PM
机器之心
- 1
资讯热榜
标签云
人工智能
OpenAI
AIGC
ChatGPT
AI
AI绘画
DeepSeek
数据
机器人
谷歌
大模型
智能
Midjourney
用户
学习
模型
GPT
开源
微软
AI创作
图像
Meta
技术
论文
Stable Diffusion
马斯克
算法
生成式
蛋白质
芯片
Gemini
代码
神经网络
计算
腾讯
研究
Sora
AI设计
3D
开发者
GPU
AI for Science
英伟达
机器学习
场景
伟达
预测
华为
Transformer
模态
Anthropic
百度
驾驶
深度学习
文本
AI视频
苹果
搜索
神器推荐
算力
LLaMA
科技
视频生成
安全
应用
xAI
干货合集
Copilot
2024
字节跳动
特斯拉
人形机器人
具身智能
亚马逊
语音
视觉
AI应用场景
写作
AGI
Claude