3D 医学图像分割

TMI2024 | 阿大、同济等提出TraCoCo,用于3D医学图像半监督分割

编辑 | ScienceAI3D 医学图像分割方法已经取得了成功,但它们对大量体素级标注数据的依赖是一个需要解决的缺点,因为获取这些标注的成本很高。 半监督学习(SSL)通过使用大量未标注数据和少量标注数据进行模型训练,解决了这一问题。 最成功的 SSL 方法基于一致性学习,即通过最小化从扰动视图中获得的模型响应之间的距离来实现的。
  • 1