PyTorch 架构优化库 torchao 正式发布,可大幅提升 AI 模型效率

据 PyTorch 新闻稿,PyTorch 旗下架构优化库 torchao 现已正式发布,该优化库主要专注于模型的量化和稀疏性优化,能够在保证性能的同时降低模型的计算成本和 RAM 用量,从而提升模型运行效率,AI在线附 GitHub 页面地址(点此访问)。据介绍,torchao 提供了一系列优化工具集,可以帮助 LLaMA 3 等流行的 AI 模型提升性能,其支持 float8、int4 等低精度数据类型,能够有效减少硬件开销和 RAM 用量。官方举例,在 LLaMA 3 70B 模型的预训练中,torchao

据 PyTorch 新闻稿,PyTorch 旗下架构优化库 torchao 现已正式发布,该优化库主要专注于模型的量化和稀疏性优化,能够在保证性能的同时降低模型的计算成本和 RAM 用量,从而提升模型运行效率,AI在线附 GitHub 页面地址(点此访问)。

据介绍,torchao 提供了一系列优化工具集,可以帮助 LLaMA 3 等流行的 AI 模型提升性能,其支持 float8、int4 等低精度数据类型,能够有效减少硬件开销和 RAM 用量。

PyTorch 架构优化库 torchao 正式发布,可大幅提升 AI 模型效率

官方举例,在 LLaMA 3 70B 模型的预训练中,torchao 提供的 float8 训练流程可将模型计算速度提升 1.5 倍。开发者只需利用 convert_to_float8_training 函数,即可将模型训练转换为 float8,从而轻松实现模型高效训练。

在推理方面,torchao 提供多种量化方法,包括权重量化(Weight-Only Quantization)和动态激活量化(Dynamic Activation Quantization),用户可以自有选择适合的量化策略,以获得最佳的模型推理性能。

在稀疏性优化方面, torchao 可以优化模型参数计算效率,据称可让 ViT-H 模型的推理速度提升 5%。同时,torchao 还可以将权重量化为 int4,并将键值缓存量化为 int8,可令 LLaMA 3.1 8B 在完整的 128K 上下文长度下仅占用 18.9GB 的显存

PyTorch 架构优化库 torchao 正式发布,可大幅提升 AI 模型效率

相关资讯

解读阿里云PAI模型压缩技术落地实时移动端智能应用

随着移动端AI应用部署需求的日益增强,模型压缩作为深度学习模型实现轻量化部署的有效手段,在移动端场景越来越受关注。尤其是剪枝、量化、权重稀疏化与网络结构搜索等算法策略,能够帮助减少深度模型端侧部署时的资源消耗(Latency、Energy与Memory等),始终是学术界与工业界的发展焦点。阿里云机器学习PAI平台模型压缩技术,在端智能应用场景实现了端侧智能的快速赋能与应用落地。尤其在2020年阿里双十一期间,淘宝直播App的“一猜到底”语音交互游戏中,PAI模型压缩技术体现了关键作用。淘宝直播一猜到底背后的模型压缩

逼近量化训练?块重建技术打造离线量化新极限

模型量化技术可以有效加速推理,已经成为人工智能芯片的标配,并在工业落地中广泛应用。离线量化(Post-Training Quantization)不需要耦合训练流程,使用成本和时间成本低,往往作为生产量化模型的首选方式,但其可调整空间有限,因此面临更大的准确度挑战,尤其是在一些特殊场景和极端要求下,不得不进一步引入更为复杂的在线量化(Quantization Aware Training)流程挽救,而这极大增加了量化模型生产的复杂度。如何在享受离线量化便捷高效的同时,在有限的调整“夹缝”中提升其效果上限,成为进一步打破技术红线的关键。在ICLR2021上,商汤科技研究院Spring工具链团队、高性能计算团队和成都电子科技大学顾实老师团队合作提出了块重建技术BRECQ,重新审视量化模型的优化粒度,首次将离线量化在4bit上的效果提升到在线量化的水平,相比在线量化可以节省大于200倍的生产时间,BRECQ在多种网络和任务上普遍取得了业界最佳效果,打造了离线量化的新极限。

DeepSpeed ZeRO++:降低4倍网络通信,显著提高大模型及类ChatGPT模型训练效率

。ZeRO++ 相比 ZeRO 将总通信量减少了 4 倍,而不会影响模型质量。