资讯列表

AI 回答物理学问题,MIT 开发自动绘制材料相图机器学习框架

编辑 | X当水结冰时,它会从液相转变为固相,密度和体积等特性会发生巨大变化。水中的相变很常见,但新型材料或复杂物理系统中的相变是一个重要的研究领域。绘制相图通常需要大量的人类直觉和理解。如何量化未知系统中的相变通常是不清楚的,尤其是在数据稀缺的情况下。麻省理工学院和瑞士巴塞尔大学的研究人员,将生成式人工智能模型应用于这个问题,开发了一种新的机器学习框架,可以自动绘制新的物理系统的相图,几乎不需要人类监督。研究人员基于物理的机器学习方法,比依赖理论专业知识的费力的手动技术更有效。而且不需要大量的标记训练数据集。例如

博世团队提出参考神经算子,学习偏微分方程解对几何变形的平滑依赖

编辑 | 枯叶蝶在解决具有任意形状域的偏微分方程问题时,现有的神经算子方法致力于学习从几何形状到解的映射,但这通常需要庞大的(几何,解)二元组数据集来训练神经算子以确保准确性。然而,对于如工程设计优化等工业应用,因单次仿真可能耗时数小时乃至数天,满足此数据需求极为困难。针对这一挑战,博世人工智能中心(BCAI)的研究人员提出了参考神经算子(RNO)的概念,作为一种新颖的神经算子实现方式,旨在学习解对几何形变的平滑依赖。具体而言,给定一个参考解,RNO 能够预测该参考几何形状任意微小扰动下的对应解,此方法极大地提高了

全球首台生物计算机开放服务:16个人脑类器官,能耗节省百万倍

使用人类脑细胞,活的。科幻小说《三体》中,为了支撑科技的发展,人类提出了几种下一代计算机的方案,其中除了传统的冯诺依曼架构,还包括量子计算机和生物计算机。其中量子计算的概念现在已有大量研究,生物计算的研究却少有报道。近日,一家瑞士初创公司 FinalSpark 发布了全球首款生物处理器。据介绍,它们都是由人脑类器官的生物神经元驱动的,而且已开放了远程访问。FinalSpark 提出的 Neuroplatform 据称是世界上第一个提供体外生物神经元访问的在线平台,此类生物处理器据称「比传统数字处理器的功耗低一百万倍

AI在用 | 用Kimi写「发疯」文案,篇篇10万+

机器之能报道编辑:文华以大模型、AIGC为代表的人工智能浪潮已经在悄然改变着我们生活及工作方式,但绝大部分人依然不知道该如何使用。因此,我们推出了「AI在用」专栏,通过直观、有趣且简洁的人工智能使用案例,来具体介绍AI使用方法,并激发大家思考。   我们也欢迎读者投稿亲自实践的创新型用例。这年头,为了抢流量,大家焦虑到头秃。今天就来安利一个搞流量的门道:用 AI 写「发癫」文案公众号,篇篇搞到 10 万 。这类文案公众号均有套路可循:1. 一个有趣的标题2. 一些看起来有大病的文案3. 几幅或治愈或搞笑的配图这用

大模型时代的计算机视觉!CVPR 2024线上分享会全日程公布

自从 OpenAI 发布 ChatGPT 以来,整个技术社区对大模型、AIGC 的关注越来越高。大模型时代,计算机视觉(CV)领域的热点话题也在不断的发生着变化。面对应接不暇的研究,我们如何才能以最快的时间了解 AI 领域的最新科研成果与发展趋势?参加顶会论文分享会就是一个不错的选择。作为计算机视觉领域的顶级会议,CVPR 每年都会吸引大量研究机构和高校参会。据统计,今年共提交了 11532 份论文,2719 篇被接收,录用率为 23.6%。为了给国内 CV 社区从业者搭建一个自由轻松的学术交流平台,机器之心计划于

港大字节提出多模态大模型新范式,模拟人类先感知后认知,精确定位图中物体

当前,多模态大模型 (MLLM)在多项视觉任务上展现出了强大的认知理解能力。然而大部分多模态大模型局限于单向的图像理解,难以将理解的内容映射回图像上。比如,模型能轻易说出图中有哪些物体,但无法将物体在图中准确标识出来。定位能力的缺失直接限制了多模态大模型在图像编辑,自动驾驶,机器人控制等下游领域的应用。针对这一问题,港大和字节跳动商业化团队的研究人员提出了一种新范式 Groma——通过区域性图像编码来提升多模态大模型的感知定位能力。在融入定位后,Groma 可以将文本内容和图像区域直接关联起来,从而显著提升对话的交

CoT提出者Jason Wei:大模型评估基准的「七宗罪」

Jason Wei 是思维链提出者,并和 Yi Tay、Jeff Dean 等人合著了关于大模型涌现能力的论文。目前他正在 OpenAI 进行工作。在 CV 领域,研究者一直把李飞飞等人创建的 ImageNet 奉为模型在下游视觉任务中能力的试金石。在大模型时代,我们该如何评估 LLM 性能?现阶段,研究者已经提出了诸如 MMLU、GSM8K 等一些评估基准,不断有 LLM 在其上刷新得分。但这些评估基准真的完美吗?思维链提出者 Jason Wei 在一篇博客中进行了深入的研究。Jason Wei 首先列举了几种成

模块化重构LLaVA,替换组件只需添加1-2个文件,开源TinyLLaVA Factory来了

AIxiv专栏是机器之心发布学术、技术内容的栏目。过去数年,机器之心AIxiv专栏接收报道了2000多篇内容,覆盖全球各大高校与企业的顶级实验室,有效促进了学术交流与传播。如果您有优秀的工作想要分享,欢迎投稿或者联系报道。投稿邮箱:[email protected][email protected] 项目由清华大学电子系多媒体信号与智能信息处理实验室 (MSIIP) 吴及教授团队和北京航空航天大学人工智能学院黄雷老师团队联袂打造。清华大学 MSIIP 实验室长期致力

全面超越DPO:陈丹琦团队提出简单偏好优化SimPO,还炼出最强8B开源模型

为了将大型语言模型(LLM)与人类的价值和意图对齐,学习人类反馈至关重要,这能确保它们是有用的、诚实的和无害的。在对齐 LLM 方面,一种有效的方法是根据人类反馈的强化学习(RLHF)。尽管经典 RLHF 方法的结果很出色,但其多阶段的过程依然带来了一些优化难题,其中涉及到训练一个奖励模型,然后优化一个策略模型来最大化该奖励。近段时间已有一些研究者探索了更简单的离线算法,其中之一便是直接偏好优化(DPO)。DPO 是通过参数化 RLHF 中的奖励函数来直接根据偏好数据学习策略模型,这样就无需显式的奖励模型了。该方法

研究:GPT-4 在预测公司盈利方面超越人类分析师

芝加哥大学的一项新研究表明,大型语言模型 GPT-4 在预测公司未来盈利增长方面能够胜过人类分析师,而且该人工智能模型仅使用了公司的财务报表,并没有额外的信息辅助。图源 Pexels以往,财务分析师依靠专业知识和经验来评估公司财务状况并预测未来盈利。然而这项研究表明,人工智能模型能够同样出色地完成这项任务,甚至做得更好。据IT之家了解,研究人员向模型提供了匿名化的财务数据,包括资产负债表和损益表,并要求其预测未来盈利增长情况。即使没有任何额外的信息,GPT-4 也能够实现 60% 的准确率,而人类分析师的典型准确率

英伟达赢麻了!马斯克xAI超级算力工厂曝光,10万块H100、数十亿美元

英伟达:尽管建,用的还是我的芯片,最近几年,随着大语言模型的飞速发展与迭代,科技巨头们都竞相投入巨额财力打造超级计算机(或大规模 GPU 集群)。他们认为,更强大的计算能力是实现更强大 AI 的关键。早在 2022 年,Meta 即宣布与英伟达共同打造大型 AI 研究超级计算机「AI Research SuperCluster」(RSC),它由 760 个英伟达 DGX A100 系统组成,共有 6080 块 GPU,性能非常强大。如今,马斯克旗下人工智能初创公司 xAI 传出了打造超级计算机的消息。据外媒 The

ICML 2024 | 脱离LoRA架构,训练参数大幅减少,新型傅立叶微调来了

AIxiv专栏是机器之心发布学术、技术内容的栏目。过去数年,机器之心AIxiv专栏接收报道了2000多篇内容,覆盖全球各大高校与企业的顶级实验室,有效促进了学术交流与传播。如果您有优秀的工作想要分享,欢迎投稿或者联系报道。投稿邮箱:[email protected][email protected]本文介绍了香港科技大学(广州)的一篇关于大模型高效微调(LLM PEFT Fine-tuning)的文章「Parameter-Efficient Fine-Tuning with Disc

用基础模型指导特征传播,首个泛化型图像匹配器OmniGlue搞定未见过域

第一个以「泛化」能力为核心设计原则的可学习图像匹配器来了!对于想要获取两张图像之间的细粒度视觉对应关系而言,局部图像特征匹配技术是高不错的 xuanz,对于实现准确的相机姿态估计和 3D 重建至关重要。过去十年见证了从手工制作到基于学习的图像特征的演变。最近,研究社区又提出了新颖的可学习图像匹配器,在传统基准上实现了性能的不断改进。尽管已经取得了长足的进步,但这些进展忽略了一个重要方面:图像匹配模型的泛化能力。如今,大多数局部特征匹配研究都集中在具有丰富训练数据的特定视觉领域(如室外和室内场景),这就导致了模型高度

MoE 高效训练的 A/B 面:与魔鬼做交易,用「显存」换「性能」

MoE 会成为未来大模型训练的新方向吗? 这是人们发现 MoE 架构可以用于大模型训练、推理后,发出的一声疑问。 MoE(Mixture of Experts),又称「混合专家」,本质是一种模块化的稀疏激活。

马斯克旗下 xAI 公司宣布 B 轮融资达 60 亿美元

感谢埃隆・马斯克(Elon Musk)旗下人工智能初创公司 xAI 今日在博客文章中宣布,该公司已在 B 轮融资中筹集了 60 亿美元(IT之家备注:当前约 435.6 亿元人民币),投资方包括 Andreessen Horowitz 和红杉资本等。xAI 表示,这笔资金将用于把 xAI 的首批产品推向市场、建设先进的基础设施并加速未来技术的研发。“未来几周将会有更多消息公布,xAI 的投前估值为 180 亿美元”马斯克在 X 上的一篇帖子中回应融资公告时表示。xAI 于 2023 年 7 月成立,去年 11 月推

百川智能首款 AI 应用主打懂搜索,但王小川不做搜索 2.0

ChatGPT 问世后,OpenAI 背后金主微软率先将 GPT 模型集成到旗下Bing 搜索引擎中,自此拉响了重塑搜索的警报。 看到机会,国内外很快便出现了一批 AI 搜索产品,例如此前大火的Perplexity、秘塔、360 搜索、天工AI……可以说 2023 年是 AI 搜索元年。 Perplexity、秘塔这些 AI 搜索产品他们应该都做过同一个梦:颠覆传统搜索。

ChatGPT 开启 macOS 公测版本下载:快捷键启动、支持识屏答疑

感谢据IT之家小伙伴投稿,ChatGPT 已开启 macOS 公测版本下载。OpenAI 于 5 月 14 日官宣推出 macOS 端应用,并计划在今年晚些时候推出 Windows 版。桌面端的 ChatGPT 应用拥有经过优化的用户界面,用户可以将处于最小化窗口的 ChatGPT 桌面应用与其他程序并排打开。用户可以通过输入或语音的方式向 ChatGPT 提问屏幕上显示的内容,ChatGPT 则能根据其“所见” 进行回答。IT之家实测,目前 ChatGPT macOS 版应用程序仅面向 Plus 和 Team 用

芝大论文证明 GPT-4 选股准确率高达 60%,人类股票分析师要下岗?AI 大牛质疑数据污染

【新智元导读】GPT-4 在为人类选股时,表现竟然超越了大部分人类分析师,和针对金融训练的专业模型?在没有任何上下文的情况下,它们直接就成功分析了财务报表,这一发现让许多业内大咖震惊了。然而好景不长,有 AI 大牛指出研究中的 bug:之所以会这样,很可能是训练数据被污染了。最近,各位业内大咖都被芝大的一篇论文震惊了。研究者发现,由 GPT-4 帮忙选择的股票,直接击败了人类!同时也 pk 掉了许多其他针对金融训练的机器学习模型。最让他们震惊的是,LLM 可以在没有任何叙述上下文的情况下,就成功分析财务报表中的数字