AI在线 AI在线

Llama版o1来了,来自上海AI Lab,强化学习代码已开源,基于AlphaGo Zero范式

作者:量子位
2024-11-05 02:20
复刻OpenAI o1推理大模型,开源界传来最新进展:LLaMA版o1项目刚刚发布,来自上海AI Lab团队。 简介中明确:使用了蒙特卡洛树搜索,Self-Play强化学习,PPO,以及AlphaGo Zero的双重策略范式(先验策略 价值评估)。 在2024年6月,o1发布之前,团队就开始探索蒙特卡洛树搜索提高大模型数学能力,积累了一些关注。

复刻OpenAI o1推理大模型,开源界传来最新进展:

LLaMA版o1项目刚刚发布,来自上海AI Lab团队。

简介中明确:使用了蒙特卡洛树搜索,Self-Play强化学习,PPO,以及AlphaGo Zero的双重策略范式(先验策略+价值评估)。

图片

在2024年6月,o1发布之前,团队就开始探索蒙特卡洛树搜索提高大模型数学能力,积累了一些关注。

这次最新开源代码,也在开发者社区引起热议。

图片

OpenAI o1系列发布后,团队开始升级算法,专注于数学奥赛问题,作为OpenAI草莓项目的开源版本。

10月初,团队上传新论文,使用成对优化(不直接给出绝对分数,而是比较两个答案的相对优劣)提高Llama模型数学奥赛能力。

在最难的AIME2024基准测试30道题中,原版LLaMA-3.1-8B-Instruct做对2道,优化后做对8道,超过了除o1-preview和o1-mini之外的其他商业闭源方案。

图片

10月底,团队宣布在基于AlphaGo Zero架构复刻OpenAI o1的努力中取得了重大进展:

已成功使模型在学习过程中通过与搜索树交互获得高级思维能力,无需人工标注

不到一周时间,项目便开源了。

图片

LLaMA版o1最新进展

目前已开源内容包括:预训练数据集、 预训练模型、强化学习训练代码

OpenLongCoT-Pretrain数据集,包含10万+条长思维链数据。

图片

每条数据包含一个完整的数学问题推理过程,包含思考内容和评分结果。

例如一个几何问题,包含了问题描述、图形坐标、计算过程和结论推导等完整的推理链路,以及对各个推理步骤的批评和验证内容,对推理过程进行评价和指导。

图片

在此数据集继续预训练后,模型可读取和输出类似o1的长思维链过程。

预训练代码尚未发布,目前推荐使用LLaMaFactory代替。

有意思的是虽然项目名为LLaMA-O1,但目前官方给的预训练模型基于谷歌Gemma 2。

图片

目前在预训练模型基础上,可以继续进行强化学习训练,从代码中可以看出训练过程如下:

  • 使用蒙特卡洛树搜索进行自我对弈(self-play)以生成经验
  • 将经验存储在优先经验回放缓冲区中
  • 从缓冲区采样批次数据进行训练
  • 更新模型参数和经验优先级

论文中也给出了训练过程的图示。

图片

图片

同时训练代码中使用了以下关键技术点:

  • 使用LoRA进行参数高效微调
  • 使用PPO算法作为策略优化方法
  • 实现了GAE(Generalized Advantage Estimation)算法用于计算优势函数
  • 使用优先经验回放提高训练效率

最后,LLaMA-O1代码发布在名为SimpleBerry的GitHub账号下,并没有特别简介,还比较神秘。

其他与SimpleBerry有关的账号和官网中,只能看出性质是一个研究实验室,也并未透露更多研究方向信息。

图片

其他o1复刻项目进展

除LLaMA-O1之外,另一个公开进展的o1复刻项目O1-Journey来自上交大团队。

团队在十月初发布了第一份进展报告,其中介绍了创新Journey Learning范式,以及第一个成功将搜索和学习整合到数学推理中的模型。

图片

O1-Journey核心开发团队主要由上交大大三、大四本科生,以及上交大GAIR实验室(生成式人工智能研究实验室)的一年级博士生组成。

指导教师包括上交大副教授刘鹏飞,姚班校友、斯隆奖得主李远志等。

图片

LLaMA-O1:https://github.com/SimpleBerry/LLaMA-O1相关论文:https://arxiv.org/abs/2406.07394https://arxiv.org/abs/2410.02884

O1-Journey:https://github.com/GAIR-NLP/O1-Journey/

相关资讯

OpenAI 最强推理模型、能够“思考”图片,o3 和 o4-mini 正式发布

OpenAI 官方介绍称,这是其在 o 系列模型中最新训练的成果,可以在回答前进行更长时间的思考,也宣称是“迄今为止 OpenAI 发布的最智能的模型”,代表了 ChatGPT 能力的一次重大飞跃,从好奇的用户到高级研究人员都将因此受益。
4/17/2025 1:27:45 AM
汪淼

Transformer革新药物研发:TRACER框架实现反应感知的分子设计与合成优化

编辑 | 2049药物研发周期长、成本高是制药行业面临的重大挑战。 据统计,一个新药从研发到上市平均需要 12 年时间,投入高达 26 亿美元。 为提升研发效率,深度学习在分子生成领域取得了显著进展。
2/26/2025 3:52:00 PM
ScienceAI

聊聊SpringAI流式输出的底层实现?

在 Spring AI 中,流式输出(Streaming Output)是一种逐步返回 AI 模型生成结果的技术,允许服务器将响应内容分批次实时传输给客户端,而不是等待全部内容生成完毕后再一次性返回。 这种机制能显著提升用户体验,尤其适用于大模型响应较慢的场景(如生成长文本或复杂推理结果)。 技术实现在 Spring AI 中流式输出的实现有以下两种方式:通过 ChatModel 实现流式输出。
4/24/2025 12:00:00 AM
磊哥