昆仑万维携手南洋理工大学抢发Q*算法:百倍提升7B模型推理能力

AIxiv专栏是机器之心发布学术、技术内容的栏目。过去数年,机器之心AIxiv专栏接收报道了2000多篇内容,覆盖全球各大高校与企业的顶级实验室,有效促进了学术交流与传播。如果您有优秀的工作想要分享,欢迎投稿或者联系报道。投稿邮箱:[email protected][email protected]自 OpenAI 的 Q* 项目曝光后,引发业内众多讨论。据现有信息汇总,Q* 项目被视作 OpenAI 在探索人工通用智能(Artificial General Intelligence

图片

AIxiv专栏是机器之心发布学术、技术内容的栏目。过去数年,机器之心AIxiv专栏接收报道了2000多篇内容,覆盖全球各大高校与企业的顶级实验室,有效促进了学术交流与传播。如果您有优秀的工作想要分享,欢迎投稿或者联系报道。投稿邮箱:[email protected][email protected]

自 OpenAI 的 Q* 项目曝光后,引发业内众多讨论。据现有信息汇总,Q* 项目被视作 OpenAI 在探索人工通用智能(Artificial General Intelligence, AGI)道路上的一次重大尝试,有望在包括数学问题解决能力、自主学习和自我改进等多个层面对人工智能技术带来革新性突破。

图片

图片

                               英伟达科学家 Jim Fan、图灵奖得主 Yann LeCun 等参与讨论 OpenAI 的 Q* 实现方式

图片

                                  Meta 科学家田渊栋则认为 Q* 是 Q-learning 和 A* 的结合,且天然地适合推理任务,尤其在数学推理方面

不过迄今为止 OpenAI 没有公开关于 Q* 算法的具体细节,其效果究竟如何我们并不得而知。

昆仑万维自 Q* 项目曝光以来,一直密切关注 Q* 的动向,且在第一时间就成立研究小组尝试开发自己的 Q* 算法,希望打破 OpenAI 的封锁,提升现有开源模型的推理能力。

经过数月的尝试,昆仑万维携手新加坡南洋理工大学成功开发了一个名为 Q* 的算法,能够显著提升现有大模型的推理能力。在 GSM8K 数据集上,Q* 帮助 Llama-2-7b 提升至 80.8% 的准确率,超越了 ChatGPT;在 MATH 数据集上,Q* 帮助 DeepSeek-Math-7b 提升至 55.4% 的准确率,超越了 Gemini Ultra;在 MBPP 数据集上,Q* 帮助 CodeQwen1.5-7b-Chat 提升至 77.0% 的准确率,缩小了与 GPT-4 的编程水平差距。

图片

论文:Q*: Improving Multi-step Reasoning for LLMs with Deliberative Planning

论文链接:https://arxiv.org/abs/2406.14283

Q* 能够帮助小模型达到参数量比其大数十倍、甚至上百倍模型的推理能力,这一算法不仅大幅提升了小模型的性能,还显著降低了计算资源的需求,为人工智能的广泛应用带来了全新可能,开创了高效智能的新纪元。

复杂推理任务全盘规划

在《Q*: Improving Multi-step Reasoning for LLMs with Deliberative Planning》论文中,研究人员首先将大语言模型的推理轨迹分解为若干个状态,对于每一个状态,参考 DeepCubeA 中的设计,通过将定义 Path Cost 的 g (s_t) 函数和定义 Accumulated Reward 的 Q*(s_t, a_t) 集成到同一个 f (s_t) 函数内,实现了对历史状态收益和未来期望收益的综合考虑。最后利用 A* 搜索算法对状态进行最佳优先搜索,实现了对复杂推理任务的全盘规划,从而提升开源模型在推理任务上的性能。

图片

其中 g (s_t) 表示当前轨迹中的多个历史状态,既 {s1,...,s_t},的聚合收益。

图片

具体 g (s_t) 的函数形式可以通过人为定义,例如判断当前代码是否符合语法规则等,或者通过构建 Process Reward Model (PRM) 进行监督学习得到;g (s_t) 中的聚合方式可以为求和,最大值,最小值等。

图片

图片

为了获得状态 - 动作对 (s_t, a_t) 的最优 Q 值以实现规划,研究人员在当前 LLM 策略生成的数据上通过监督学习的方式训练了一个代理 Q 值模型图片。训练过程中的真实标签图片可以由三种不同的方式得到,包括离线强化学习,蒙塔卡罗采样估计和利用更强大的语言模型补全。

实验结果表明,昆仑万维本次所提出的 Q* 框架,可以显著地提升 LLM 的推理能力,在 GSM8K 数据集上,Q* 帮助 Llama-2-7b 提升至 80.8% 的准确率,超越了 ChatGPT;在 MATH 数据集上,Q* 帮助 DeepSeek-Math-7b 提升至 55.4% 的准确率,超越了 Gemini Ultra; 在 MBPP 数据集上,Q* 帮助 CodeQwen1.5-7b-Chat 提升至 77.0% 的准确率,缩小了与 GPT-4 的编程水平差距。

图片

图片

图片

研究证明,Q* 能够帮助参数量仅为 7b 的小模型达到参数量比其大数十倍甚至百倍模型的推理能力,大幅提升模型的性能,并显著降低了计算资源的需求。目前,Q* 的研究尚在初级阶段,算法在各个环节还有进一步的改进空间。未来,昆仑万维会继续深入此项研究,不断提升国产开源模型推理能力,打破 OpenAI 闭源封锁,为人工智能前沿技术发展带来全新可能。

相关资讯

昆仑万维发布「天工 SkyAgents」平台,零代码打造AI智能体

12月1日,昆仑万维正式发布「天工SkyAgents」平台,助力大模型走入千家万户。「天工SkyAgents」是国内领先的AI Agents开发平台,基于昆仑万维「天工大模型」打造,具备从感知到决策,从决策到执行的自主学习和独立思考能力。用户可以通过自然语言构建自己的单个或多个“私人助理”。并且将不同任务模块化,通过操作系统模块的方式,实现执行包括问题预设、指定回复、知识库创建与检索、意图识别、文本提取、http请求等任务。在「天工SkyAgents」平台上,用户可以通过自然语言和简单操作,无需代码编程,即可在几分

昆仑万维「天工SkyAgents」Beta版全网测试

12月25日,昆仑万维AI Agents开发平台「天工SkyAgents」Beta版正式开放测试,用户可在。昆仑万维「天工SkyAgents」AI Agents开发平台,基于昆仑万维「天工大模型」打造,具备从感知到决策,从决策到执行的自主学习和独立思考能力。用户可以通过自然语言构建自己的单个或多个“私人助理”,并能将不同任务模块化,通过操作系统模块的方式,实现执行包括问题预设、指定回复、知识库创建与检索、意图识别、文本提取、http请求等任务。在大模型技术高速发展、AI Agents应用不断进步的当下,昆仑万维「天

AI大模型首次牵手国民级综艺,昆仑万维天工AI联合《最强大脑》加速大模型落地

1月5日周五晚21:20,由昆仑万维「天工APP」特约赞助的《最强大脑》第11季正式播出。这是AI大模型技术与国民级综艺IP的首度深度合作,在节目中,「天工APP」将发挥其能搜、能聊、能写的多项超级AI大模型能力,与嘉宾选手深度互动,参与趣味脑力竞技环节,从而进一步推动大模型技术的普适应用,降低技术门槛,让越来越多的用户能够轻松、便捷地拥抱大模型。作为一档国内影响力最广、最具代表性的国民级的大型科学竞技综艺节目,《最强大脑》在过去十年间已成功举办了10期,在372个挑战项目中,近600位中外选手齐聚舞台,参与脑力竞