DeepSeek 开源进度 3/5:深度学习利器 DeepGEMM

DeepSeek“开源周”的进度来到3/5:深度学习利器 DeepGEMM。
感谢DeepSeek“开源周”的进度今日来到 3/5:支持稠密和混合专家模型 (MoE) 的 FP8 矩阵乘法 (GEMM) 库,用以驱动 V3 / R1 模型的训练和推理。

DeepSeek 开源进度 3/5:深度学习利器 DeepGEMM

  • 在 Hopper GPU 上可实现高达 1350+ FP8 TFLOPS 性能

  • 无复杂依赖,代码简洁如教程

  • 完全采用即时编译技术(Just-In-Time)

  • 核心代码仅约 300 行 —— 在大多数矩阵尺寸下超越了专家优化的内核

  • 支持稠密布局和两种 MoE 布局

AI在线附开源链接:https://github.com/deepseek-ai/DeepGEMM

官方介绍大意如下:

DeepGEMM 是一个专为高效且清晰的 FP8 通用矩阵乘法(GEMM)设计的库,具备 DeepSeek-V3 所提出的精细化缩放能力。它支持普通的 GEMM 以及 Mix-of-Experts (MoE) 分组 GEMM。

该库基于 CUDA 编写,在安装时无需预编译,而是通过轻量级的即时编译(JIT)模块,在运行时动态编译所有内核。

目前,DeepGEMM 仅支持 NVIDIA Hopper 张量核心。为了应对 FP8 张量核心累加不精确的问题,它使用了 CUDA 核心的两级累加(提升)方法。虽然它借鉴了部分 CUTLASS 和 CuTe 的理念,但并未过度依赖它们的模板或代数结构。

DeepGEMM 的设计简洁,核心内核函数只有大约 300 行代码,方便学习 Hopper FP8 矩阵乘法和优化技术。

尽管采用轻量设计,DeepGEMM 在多种矩阵形状下的性能表现与专家优化的库相当,甚至更好。

我们在 H800 上,使用 NVCC 12.8 测试了 DeepSeek-V3 / R1 推理中可能用到的各种矩阵形状(包括预填充和解码,但不涉及张量并行)。所有加速指标都是相对于我们内部精心优化的 CUTLASS 3.6 实现计算的。

DeepGEMM 在某些矩阵形状下的表现不尽如人意,欢迎有兴趣的朋友提交优化 PR。

相关资讯

OpenAI首席研究官:DeepSeek独立发现了o1的一些核心思路,奥特曼、LeCun纷纷置评

成本打下来了,需求更多才对? 春节这几天,国内外 AI 圈都被 DeepSeek 刷了屏。 英伟达的股市震荡更是让全世界看得目瞪口呆(参见《英伟达市值蒸发近 6000 亿美元,而 DeepSeek 刚刚又开源新模型》)。

自有歪果仁为DeepSeek「辩经」:揭穿围绕DeepSeek的谣言

围绕 DeepSeek 的谣言实在太多了。 面对 DeepSeek R1 这个似乎「一夜之间」出现的先进大模型,全世界已经陷入了没日没夜的大讨论。 从它的模型能力是否真的先进,到是不是真的只用了 550W 进行训练,再到神秘的研究团队,每个角度都是话题。

爆肝48小时!学会这8招,让DeepSeek变得超好用!

更多相关介绍:. 重磅好文! 8个章节带你全方位了解DeepSeek这两天,DeepSeek-R1 火的飞起,在中日美三个 Appstore 榜上登顶。