当大模型Scaling Law继续,万卡集群算力释放在「百舸」这里找到一条通途

在电影《天下无贼》中,葛优扮演的黎叔有这样一句经典的台词,「二十一世纪什么最贵?人才!」而随着人工智能行业进入到大模型时代,这一问题的答案已然变成了「算力」。随着模型规模急剧扩张,参数已经飙升到了千亿甚至万亿级,业界开启了千模大战,AI 算力需求不可避免迎来爆炸式增长,无论是前期训练还是后期推理,都是如此。在训练层面,OpenAI 曾在 2018 年做过估算,自 2012 年以来,AI 模型训练算力需求每 3.5 个月翻一番,每年所需算力增幅高达 10 倍,增速远远超出了芯片产业长期存在的摩尔定律(性能每 18 个

在电影《天下无贼》中,葛优扮演的黎叔有这样一句经典的台词,「二十一世纪什么最贵?人才!」而随着人工智能行业进入到大模型时代,这一问题的答案已然变成了「算力」。

随着模型规模急剧扩张,参数已经飙升到了千亿甚至万亿级,业界开启了千模大战,AI 算力需求不可避免迎来爆炸式增长,无论是前期训练还是后期推理,都是如此。

在训练层面,OpenAI 曾在 2018 年做过估算,自 2012 年以来,AI 模型训练算力需求每 3.5 个月翻一番,每年所需算力增幅高达 10 倍,增速远远超出了芯片产业长期存在的摩尔定律(性能每 18 个月翻一番)。同时随着大模型及应用越来越多地部署到企业实际业务场景中,推理算力需求也水涨船高。

因此,指数级增长的算力需求对 GPU 等硬件提出了更高要求,大规模 GPU 算力集群成为必然选择。这也是为什么近年来国内外科技厂商纷纷布局 AI 算力基础设施,死磕万卡甚至 10 万卡集群。此外,大规模算力集群也越来越凸显训推一体的重要性,寻求在同一个集群中无缝切换大模型的训练和推理,简化用户部署流程。

虽然 GPU 集群可以满足大模型时代的算力需求,但面临的挑战也不少,比如多类型芯片混合训练、数据中心电力消耗、网络通信和负载、单卡算力效率、多卡并行计算、设施稳定性等。加之当前集群算力利用率不高且成本高昂,这些都要求厂商在集群系统、框架和算法层面进行技术突破。

国内一些厂商已经在面向万卡集群的 AI 基础设施方面积累了丰富的经验,并催生了覆盖广泛的「多芯混合训练时代」。我们以百度为例,其基于文心大模型训练的经验沉淀,推出了 AI 异构计算平台「百舸」,打造业界领先的多芯混合训练 AI 集群,并正在帮助客户更快、更稳、更省地落地大模型应用。

从 2021 年的 1.0 版本到去年的 3.0 版本,我们发现,连续三年,百舸围绕系统性提升 GPU 集群的整体算力利用率不断深入优化。在今日举办的 2024 百度云智大会上,再度升级的百舸 4.0 带给了客户更多惊喜,也给同行们带来了一点小小的震撼。

图片

算力浪费降至 1/10

万卡集群下的大模型训推更快、更省

对于国内云厂商来说,面对 AI 大模型时代的巨量算力需求,归根到底要解决好两个核心诉求:一是如何在算力资源供应短缺的大环境下扩大算力来源,二是如何在大模型产生的高昂计算成本压力下极致高效地利用算力。从已有进展来看,百舸 AI 异构计算平台做到了「两手抓、两手都要硬」。

在去年 12 月的 2023 百度云智大会・智算大会上,百舸 3.0 已经展现了业界领先的万卡集群算力释放能力,集群有效训练时长达到了 98%、网络带宽有效利用率达到了 95%。如今,9 个多月过去了,百舸 4.0「百尺竿头更进一步」,在一些集群算力指标上又有所提升。

此次,百舸 4.0 在整体架构上相较 3.0 版本有了略微调整,从底层硬件往上依次分为资源层、组件层、大模型加速层和工具层。四层架构,各司其职,针对大模型的训推、部署和调优等全流程进一步优化。

具体来讲,资源层提供了包括异构芯片、高速互联、高效存储等在内的算力资源,组件层主要解决大规模集群的稳定性和性能问题,大模型加速层专为大模型训推提速而设计,工具层则通过一套管理界面提供了更便捷的操作体验。

图片

                               百度集团执行副总裁、百度智能云事业群总裁沈抖

依托四层架构,百舸 4.0 对集群算力调用的各个环节做到了精准把控,并具备了「多、快、稳、省」四大特性,形成了其作为 AI 异构计算平台的核心竞争力。

首先是多芯异构。我们观察到,一云多芯已经成为算力集群的主流选择,既可以屏蔽硬件之间的差异,利用弹性更强的供应链体系摆脱对单一芯片的依赖;又能够根据用户特定业务场景灵活调配算力资源并提高利用率。

百舸 4.0 构建了 GPU 和多类型 AI 芯片组成的单一智算集群,兼容了昆仑芯、昇腾、海光 DCU、英伟达、英特尔等国内外主流 AI 芯片的混合训练,并全面适配。同时通过「控制台」轻松一键发起,易用性很高。百舸 4.0 还通过大模型训推加速套件 AIAK 支持了更多使用场景、多种模型架构和主流训推方式,全能属性拉满。

当然,对于不同规模的多芯混合训练任务,百舸 4.0 将性能损失拉到业界最低,其中百卡性能损失控制在 3%,万卡性能损失在 5% 以内。

如果说多芯混训是走出算力卡脖子的关键一步,那么接下来就要集中精力考虑如何围绕集群部署、大模型训推和效果调优来更充分地释放万卡集群的算力潜能

现在,百舸 4.0 帮助客户省去了大量复杂和琐碎的配置和调试工作,最快 1 小时便能创建万卡规模集群,这要比行业通常需要的数天甚至数周快得多。

然后便又是 AIAK 发挥了用武之地,针对主流开源大模型在并行策略、显存、算力等层面进行了深度优化,为万卡集群下的大模型训推加速注入新的驱动力。

一方面,百舸 4.0 在大模型加速层全新升级了 AIAK 训练加速,万卡集群下支持万亿参数 MoE 模型训练。不仅如此,单个芯片的效能也发挥到了极致,配合使用优化后的通信和并行策略,整体训练效率提升了 30%。这些都预示着集群实力的大增。

另一方面,百舸 4.0 同样升级了 AIAK 推理加速,尤其在速度和成本两个客户最关心的方面加码,效果较以往版本有了质的提升。对于长文本推理任务,模型如今可以做到「极速生成」与「秒回」,效率提升了一倍。同时,投机式推理策略的引入可以先让成本低的小模型生成多个预选结果,然后交给成本高的大模型验证并给出最终结果,从而调动更多便宜的小模型来承担计算负担,由此降低了成本。

当然实际运行中需要面对数据清洗、生成、格式对齐等重复性工作,百舸 4.0 具备的数据工程能力可以调用大模型来处理这些工作。此外提供了数据增强、效果评估和 Prompt 优化等功能,以便进一步调优。

大模型调用全流程尤其是训练阶段不单单要求速度快,稳定性同样重要。如果一个集群无法保证稳定的训练时长,易出错、难纠错、诊断慢、恢复时间长,则会对整体效率和成本造成不利影响。目前,百舸 4.0 在万卡规模 AI 任务上的有效训练时长占比已经达到 99.5%,这意味着昂贵的计算资源可以得到最大化利用,浪费更少,成本效益更高。

最后,算力资源利用率的高低一定程度上决定了集群能不能为客户省钱,当前行业平均水平仅能达到 50%,一半的算力被浪费了。借助自研的训推一体技术,百舸 4.0 让集群同时支持在线推理服务部署和离线训练任务,训推之间的算力自由切换,训推场景在不同时间复用相同的 GPU 资源,并在推理时将高算力高显存的训练卡分配给多个业务应用,最终将算力资源利用率提升到了 90%。

可以说,从支持多芯混训到加速大模型训推、逼近 100% 的有效训练时长和远超行业的算力资源利用率,百舸 4.0 交出了一份亮眼的「成绩单」,为客户当前的大模型落地实践尽最大可能解除算力层面的后顾之忧,势必更能赢得他们的青睐。

背后的路线思考

五大维度完成算力破局

如何在大模型时代发挥出大集群的有效算力,这是一个重大而急迫的命题。当前有能力提供万卡集群的云厂商都在力争脱颖而出,这就要求他们在优化架构、降低成本、提供差异化服务、构建智算生态等各个方面出击,找到算力破局关键点。

全新升级的百舸 4.0,提供了当前万卡集群的最优解。 

我们发现,百舸已经形成自己的一套成熟打法,针对能耗有效率、单卡算力有效率、并行扩展有效率、有效训练时长和资源利用率等五大行业痛点问题,对症下药,用技术突破为算力释放保驾护航

针对大模型训练产生的巨大电力消耗,百度云通过在自建的数据中心采用自研的液冷方案,使得机器性能提升 10% 的同时故障率降低了 60%-70%,从而令数据中心能源效率指标 PUE(Power Usage Effectiveness)平均值小于 1.1,优于业界平均水平。

为了提升集群内单卡算力有效率,百舸 4.0 依托 AIAK 训练加速方案,通过显卡、算力等层面的深度优化,在主流开源大模型训练任务中将 GPU 有效利用率 MFU(Model FLOPS Utilization)提升到了行业领先水平,达到 70% 以上。

单卡算力效能极致「压榨」的同时,多卡并行计算效率也要跟上。现阶段大模型往往采用多个计算资源同时训练的并行方式,并发展出了计算资源利用率高、效率高、开发难度小的自动并行策略,使训练任务在多个计算单元上的分配更为合理和高效。百舸 4.0 通过 AIAK 进一步优化了并行策略,较开源方案实现了 30% 的性能提升。同时模型并行策略调优时间也大幅降低,从小时级缩短至如今的分钟级,加快了训练和优化速度。

此外如上所述,百舸 4.0 在万卡任务上实现了 99.5% 的有效训练时长,最大程度避免因频繁故障而导致的训练任务中断、资源浪费、模型收敛速度慢、运维成本增加等问题,集群稳定性得到前所未有地加强。达成这一效果主要得益于以下几大能力的共同加持:

全方位的可观测能力,对资源池、队列、节点、任务、实例、加速卡等多个维度实现了无死角的覆盖。

自动容错能力,百舸 Flash Checkpoint 故障恢复机制实现秒级 Checkpoint 和近乎无损的 Step 粒度容错。此外为 PyTorch 大模型训练场景开发的 Checkpoint 框架 FlashCKPT 可以实现 1 秒千亿大模型 Checkpoint 写入。

故障诊断和快速恢复能力,通过快速筛查、召回集群硬件故障并隔离自愈,避免在故障芯片上分配工作负载,有效降低任务故障发生频次。故障恢复时间从小时级降至分钟级。

百舸集群级集合通信库 BCCL 不仅可以在故障发生时做到秒级感知和定位,提高故障处理效率。同时快速定位训练慢的节点,提升整体训练效率。

同样地,百舸 4.0 算力资源利用率突破 90%,除了自研的训推一体技术,还要归功于弹性伸缩机制、弹性层级队列等技术,可以根据训练任务的变化来自动分配和布局算力,从而将利用率拉到了行业最高水平。

在我们看来,五大维度不仅巩固了百舸 4.0 在万卡集群时代的行业领先地位,也为其他云厂商在算力资源管理以及智算集群的设计、调度、容错等方面提供了一定的借鉴。

写在最后

今年 9 月初,马斯克宣布旗下 xAI 打造的由 10 万块 Nvidia H100 组成的超级训练集群 Colossus 正式上线,并将在未来几个月另外增加 10 万块 GPU(一半为 H200)。这释放出了一种很明显的信号:不止万卡,更大规模的 10 万、数十万卡集群的建设「时不我待」。

可以看到,无论是为现阶段超大规模模型的训练提供算力支撑,还是推动大模型技术的进一步落地普及、以及加速未来 AGI 时代的更快到来,集群的作用似乎已经无可取代,对于企业依托大模型的智能化转型也至关重要。

显然,百度早在 2021 年就意识到了这一点,通过全方位布局百舸 AI 异构计算平台来建设大模型时代的 AI 基础设施,并在算力、通信、能效等方面的持续优化中构筑起更坚实的 AI 生态发展基石。

百舸 4.0 的全新发布,既有助于增强百度 AI 基础设施的可持续性与领先性,还会为客户在业务场景中落地大模型应用尽可能地降本增效,更对大模型引领的 AIGC 爆发以及 AI 普惠铺平道路。

未来,随着集群规模的继续扩大,还会出现更复杂的软硬件协同、算力调度等问题,这些都需要通过持续的技术突破来一一克服。面对挑战更大的算力之争,百舸已经做好了准备。

相关资讯

训大模型为啥这么贵?专家:一半以上算力被浪费了

人工智能时代,大模型的发展带来了智能算力需求的大爆发。据估算,自 2012 年以来,AI 模型训练算力需求每 3~4 个月就翻一番,每年训练 AI 模型所需算力增长幅度高达 10 倍。同时,OpenAI 曾在 2020 年提出 Scaling law 定律。该定律指出,大模型的最终性能与计算量、模型参数量及训练数据量的大小密切相关。换言之,若要提升大模型的能力,就需要不断增加模型参数和训练数据量,这就需要部署大规模的训练集群,随着集群规模的不断扩大,训练成本也呈指数级增长。9月13日,在百度智能云举办的媒体技术沙龙

百度全面升级百舸 AI 异构计算平台 4.0、千帆大模型平台 3.0

感谢2024 百度云智大会今日在北京召开,百度在大会上宣布全面升级百舸 AI 异构计算平台 4.0、千帆大模型平台 3.0 两大 AI 基础设施,并升级代码助手、智能客服、数字人三大 AI 原生应用产品。百度智能云事业群总裁沈抖表示:“2024 年大模型的产业落地正在加速,目前在千帆大模型平台上,文心大模型日均调用量超过 7 亿次,累计帮助用户精调了 3 万个大模型,开发出 70 多万个企业级应用。过去一年,文心旗舰大模型降价幅度超过 90%,主力模型全面免费。”升级百舸 4.0为满足企业落地大模型从集群创建、开发

2024 世界人工智能大会 7 月 4 日至 6 日在上海举行,合作企业包括阿里巴巴、特斯拉等

感谢2024 世界人工智能大会(WAIC)启动会宣布,2024 世界人工智能大会将于 7 月 4 日至 6 日在上海举办。据介绍,WAIC 2023 累计举办 133 场线上线下活动,展览面积超过 5 万平米。截至大会闭幕时,线下参观人数突破 17.7 万人,全网流量突破 10.7 亿,全网曝光量达 64.1 亿,辐射 2600 余家海内外网络与媒体,均创历史新高。会议现场举行了 WAIC 全球战略合作计划签约仪式。首批签约单位有:阿里云、东浩兰生会展集团股份有限公司、IEEE、蚂蚁集团、商汤科技、上海临港科创投资