AI在线 AI在线

大模型除了聊天还能做什么?关于大模型的分类和应用

作者:DFires
2025-04-07 08:15
大模型技术发展到今天,其功能可以说是日新月异;并且很多企业已经在探索大模型的应用场景和技术实现;但是很多人到现在对大模型的了解仅仅只限于能聊个天,问个问题。 但实际上,大模型能够做的事要远比我们想象中的要多的多;因此,今天我们就从用户和技术两个角度来介绍一下大模型的应用。 关于大模型的分类和应用问题如果想弄清楚大模型是怎么使用的,首先要知道大模型的分类;不同类型的模型适合不同的应用场景,其功能和实现也各不相同。

大模型技术发展到今天,其功能可以说是日新月异;并且很多企业已经在探索大模型的应用场景和技术实现;但是很多人到现在对大模型的了解仅仅只限于能聊个天,问个问题。

大模型除了聊天还能做什么?关于大模型的分类和应用

但实际上,大模型能够做的事要远比我们想象中的要多的多;因此,今天我们就从用户和技术两个角度来介绍一下大模型的应用。

大模型除了聊天还能做什么?关于大模型的分类和应用

关于大模型的分类和应用问题

如果想弄清楚大模型是怎么使用的,首先要知道大模型的分类;不同类型的模型适合不同的应用场景,其功能和实现也各不相同。

而关于大模型的分类问题其实是一个复杂的问题,大模型的分类有多个维度,比如从任务类型有分类模型,翻译模型,摘要模型和文本生成等。

但从与具体的技术场景结合来看,又有NLP任务,CV任务等;而从功能来看又有生成式模型和推理模型;从垂直角度看,有处理图片的模型,有写代码的模型;如果从纯粹的技术角度来看,又有Transformer模型,Gan网络等。

大模型除了聊天还能做什么?关于大模型的分类和应用

而在实际的模型设计和开发过程中,很多模型采用的又是混合架构;比如说一个模型既有生成能力,又有推理能力,而能够生成多种模态数据的模型被称为多模态。

再加上大模型技术日新月异的迭代速度,因此很多人很难分清哪个模型是干啥的,有哪些功能;因此在选择模型时,最好就是根据自己的任务需求去搜索相关的模型,最后再根据模型的官方介绍,然后再应用到具体的业务场景中。

大模型分类困难的四大根源

(1) 技术融合

现代大模型(如GPT-4、Claude 3)已发展为「通用计算平台」,同时具备:

  • 生成能力(文本/图像/代码)
  • 推理能力(数学/逻辑)
  • 判别能力(分类/检测)
  • 多模态理解(文本+图像+音频)

(2) 命名混乱

  • 商业命名(如"文心一言")不反映技术架构
  • 同一架构不同规模(LLaMA-2-7B/13B/70B)能力差异巨大

(3) 动态进化

插件系统的引入(如ChatGPT的Browsing/Code Interpreter)使单模型能力边界模糊

(4) 评估标准缺失

缺乏统一的「能力维度评估体系」,不同厂商宣传指标不可比

理解大模型分类的本质是:放弃绝对分类,建立多维评估体系。建议从实际任务出发进行验证,而非过度依赖理论分类。

前面简单了解了一下大模型的分类问题,但仅仅知道大模型有哪些类型并没什么用,最重要的是用大模型解决我们的问题;以此来提高我们的工作和生活效率。

所以,学习大模型没有最好的办法,或者说办法只有一个;那就是多用,多尝试,多研究。

大模型应用

大模型其实从应用的角度来说,主要有三个方面:

  • 第一就是利用大模型本身的能力,比如AIGC去做一些文本,视频,图片的生成能力;比如做自媒体,写文章,修图,剪辑视频等。
  • 其次,就是RAG给大模型做知识增强,因为大模型本身限制的原因;导致其在某些方面知识缺陷,因此就可以使用外部知识库的方式让大模型做知识增强。
  • 最后,可以说是最有发展前景的方向就是——智能体;智能体就是给大模型装上手和脚,通过思维链,工作流,function call/MCP等技术;使得大模型具备独立思考和使用外部工具的能力。

大模型除了聊天还能做什么?关于大模型的分类和应用

当然,这三种方式大都是从技术角度来说的;但从用户角度来说,我们可以使用一些生成模型做一些简单的工作,如处理图片,写文档等。

而一些企业基于工作流平台开发智能体,比如coze平台;我们就可以根据自己的需要构建一个能够执行特定任务的智能体;以此来提高我们的工作效率。

总之,人工智能技术处于一个快速发展快速迭代的过程;很多新技术和名词每天都在涌现;因此,我们需要做的就是不断跟进市场的脚步,多去尝试和试验;最终我们就会知道大模型能做什么,以及我们需要大模型给我们做什么。

相关标签:

相关资讯

Meta杨立昆引燃全民大讨论:美政府有些人被洗脑了,监管让开源变得像非法一样!Meta也犯过错!大模型不如猫,保质期就3年!

编辑 | 言征出品 | 51CTO技术栈(微信号:blog51cto)1月23日,在冬季达沃斯论坛的“辩论技术”环节,Meta公司副总裁兼首席人工智能科学家Yann Lecun、麻省理工学院媒体实验室主任 Dava Newman、Axios首席技术记者Ina Turpen Fried(主持人)就未来十年前沿科技进行了时长47分钟的“全民”大讨论,话题涵盖了LLM、智能体、消费机器人、脑机接口、跨物种、太空探索,也讨论了非常让Meta敏感的“技术作恶”、审查监管、开闭源之争。 观众们更是抓住机会让两位嘉宾抖出了很多猛料。 Lecun表示,现在的大模型并没有达到预期效果,在很多方面都存在不足:“我认为当前 LLM范式的保质期相当短,可能只有3到5年。
1/26/2025 11:35:05 AM
言征

DeepSeek R1 震撼登场:从介绍到使用

春节期间,DeepSeek 掀起了一股热潮,成为了科技领域的热门话题。 身边很多非圈内人士茶余饭后也在讨论 DeepSeek,足以见得其火爆程度。 介绍DeepSeek 全称:杭州深度求索人工智能基础技术研究有限公司,成立于 2023 年 7 月 17 日。
2/11/2025 8:35:30 AM
oec2003

从 DeepSeek 看25年前端的一个小趋势

从 DeepSeek 看25年前端的一个小趋势大家好,我卡颂。 最近DeepSeek R1爆火。 有多火呢?
2/11/2025 10:17:19 AM
卡颂