微软开源 bitnet.cpp 1-bit LLM 推理框架:不靠 GPU 可本地运行千亿参数 AI 模型,能耗最多降低 82.2%

科技媒体 marktechpost 昨日(10 月 18 日)发布博文,报道称微软公司开源了 bitnet.cpp,这是一个能够直接在 CPU 上运行、超高效的 1-bit 大语言模型(LLM)推理框架。用户通过 bitnet.cpp 框架,不需要借助 GPU,也能在本地设备上运行具有 1000 亿参数的大语言模型,实现 6.17 倍的速度提升,且能耗可以降低 82.2%。传统大语言模型通常需要庞大的 GPU 基础设施和大量电力,导致部署和维护成本高昂,而小型企业和个人用户因缺乏先进硬件而难以接触这些技术,而 bitnet.cpp 框架通过降低硬件要求,吸引更多用户以更低的成本使用 AI 技术。

科技媒体 marktechpost 昨日(10 月 18 日)发布博文,报道称微软公司开源了 bitnet.cpp,这是一个能够直接在 CPU 上运行、超高效的 1-bit 大语言模型(LLM)推理框架。

用户通过 bitnet.cpp 框架,不需要借助 GPU,也能在本地设备上运行具有 1000 亿参数的大语言模型,实现 6.17 倍的速度提升,且能耗可以降低 82.2%。

传统大语言模型通常需要庞大的 GPU 基础设施和大量电力,导致部署和维护成本高昂,而小型企业和个人用户因缺乏先进硬件而难以接触这些技术,而 bitnet.cpp 框架通过降低硬件要求,吸引更多用户以更低的成本使用 AI 技术。

bitnet.cpp 支持 1-bit LLMs 的高效计算,包含优化内核以最大化 CPU 推理性能,且当前支持 ARM 和 x86 CPU,未来计划扩展至 NPU、GPU 和移动设备。

根据初步测试结果,在 ARM CPU 上加速比为 1.37x 至 5.07x,x86 CPU 上为 2.37x 至 6.17x,能耗减少 55.4% 至 82.2%。

微软开源 bitnet.cpp 1-bit LLM 推理框架:不靠 GPU 可本地运行千亿参数 AI 模型,能耗最多降低 82.2%

微软开源 bitnet.cpp 1-bit LLM 推理框架:不靠 GPU 可本地运行千亿参数 AI 模型,能耗最多降低 82.2%

bitnet.cpp 的推出,可能重塑 LLMs 的计算范式,减少对硬件依赖,为本地 LLMs(LLLMs)铺平道路。

用户能够在本地运行模型,降低数据发送至外部服务器的需求,增强隐私保护。微软的“1-bit AI Infra”计划也在进一步推动这些模型的工业应用,bitnet.cpp 在这一进程中扮演着重要角色。

AI在线附上参考地址

  • Microsoft Open-Sources bitnet.cpp: A Super-Efficient 1-bit LLM Inference Framework that Runs Directly on CPUs

  • GitHub

相关资讯

微软开源 1.58bit 推理框架:千亿参数模型量化后单 CPU 可跑,速度每秒 5-7 个 token

微软开源 1bit 大模型推理框架!现在 1000 亿参数大模型量化后单 CPU 可跑,速度可达每秒 5-7 个 token。比如在苹果 M2 新品上运行 BitNet b1.58 3B 模型,be like:就是今年爆火论文 The Era of 1-bit LLMs 的官方代码实现,开源不到一周 GitHub 已揽获 7.9k Star。

微软、国科大开启1Bit时代:大模型转三进制,速度快4倍能耗降至1/41

革命性的提升来了。把大模型的权重统统改成三元表示,速度和效率的提升让人害怕。今天凌晨,由微软、国科大等机构提交的一篇论文在 AI 圈里被人们争相转阅。该研究提出了一种 1-bit 大模型,实现效果让人只想说两个字:震惊。如果该论文的方法可以广泛使用,这可能是生成式 AI 的新时代。对此,已经有人在畅想 1-bit 大模型的适用场景,看起来很适合物联网,这在以前是不可想象的。人们还发现,这个提升速度不是线性的 —— 而是,模型越大,这么做带来的提升就越大。还有这种好事?看起来英伟达要掂量掂量了。近年来,大语言模型(L

真·ChatGPT平替:无需显卡,MacBook、树莓派就能运行LLaMA

Meta 在上个月末发布了一系列开源大模型 ——LLaMA(Large Language Model Meta AI),参数量从 70 亿到 650 亿不等。由于模型参数量较少,只需单张显卡即可运行,LLaMA 因此被称为 ChatGPT 的平替。发布以来,已有多位开发者尝试在自己的设备上运行 LLaMA 模型,并分享经验。