微软开源 1.58bit 推理框架:千亿参数模型量化后单 CPU 可跑,速度每秒 5-7 个 token
微软开源 1bit 大模型推理框架!现在 1000 亿参数大模型量化后单 CPU 可跑,速度可达每秒 5-7 个 token。比如在苹果 M2 新品上运行 BitNet b1.58 3B 模型,be like:就是今年爆火论文 The Era of 1-bit LLMs 的官方代码实现,开源不到一周 GitHub 已揽获 7.9k Star。- 14
- 0
微软开源 bitnet.cpp 1-bit LLM 推理框架:不靠 GPU 可本地运行千亿参数 AI 模型,能耗最多降低 82.2%
科技媒体 marktechpost 昨日(10 月 18 日)发布博文,报道称微软公司开源了 bitnet.cpp,这是一个能够直接在 CPU 上运行、超高效的 1-bit 大语言模型(LLM)推理框架。用户通过 bitnet.cpp 框架,不需要借助 GPU,也能在本地设备上运行具有 1000 亿参数的大语言模型,实现 6.17 倍的速度提升,且能耗可以降低 82.2%。传统大语言模型通常需要庞…- 43
- 0
手机跑大模型提速 4-5 倍:微软亚研院开源新技术 T-MAC,有 CPU 就行
有 CPU 就能跑大模型,性能甚至超过 NPU / GPU!没错,为了优化模型端侧部署,微软亚洲研究院提出了一种新技术 —— T-MAC。这项技术主打性价比,不仅能让端侧模型跑得更快,而且资源消耗量更少。咋做到的??在 CPU 上高效部署低比特大语言模型一般来说,要想在手机、PC、树莓派等端侧设备上使用大语言模型,我们需要解决存储和计算问题。常见的方法是模型量化,即将模型的参数量化到较低的比特数,…- 16
- 0
英伟达黄仁勋解读“CEO 数学”:花小钱,办大事
英伟达首席执行官黄仁勋日前在 2024 台北电脑展前夕提出了一个有趣的观念 ——“CEO 数学”。“买得越多,省得越多,” 黄仁勋在演讲中表示,“这就是 CEO 数学,它并不完全准确,但却很有效。”乍一听让人困惑?黄仁勋随后解释了这个观念的含义。他建议企业同时投资图形处理器 (GPU) 和中央处理器 (CPU)。这两种处理器可以协同工作,将任务完成时间从“100 个单位缩短到 1 个单位”。因此,…- 8
- 0
4090成A100平替?上交大推出推理引擎PowerInfer,token生成速率只比A100低18%
呆板之心报道呆板之心编辑部PowerInfer 使得在消费级硬件上运转 AI 更加高效。上海交大团队,刚刚推出超强 CPU/GPU LLM 高速推理引擎 PowerInfer。项目地址::?在运转 Falcon (ReLU)-40B-FP16 的单个 RTX 4090 (24G) 上,PowerInfer 对比 llama.cpp 实现了 11 倍加速!PowerInfer 和 llama.cpp…- 39
- 0
AMD 的下一代 GPU 是 3D 集成的超等芯片:MI300 将 13 块硅片组合为一个芯片
编辑 | 白菜叶AMD 在近日的 AMD Advancing AI 活动中揭开了其下一代 AI 加速器芯片 Instinct MI300 的面纱,这是前所未有的 3D 集成壮举。MI300 将为 El Capitan 超等估计机提供动力,它是一个集估计、内存和通信于一体的夹层蛋糕,有三片硅片高,可以在这些硅平面之间垂直传输多达 17 TB 的数据。它可以使某些机器学习关键估计的速度提高 3.4 倍…- 6
- 0
专访AMD芯片架构师Sam Naffziger:Chiplet将如何影响芯片制作
这五年来,处理器领域发生的变化是深刻的,从单片硅芯片变成了小型 chiplet 的组合 —— 这些小型 chiplet 组合起来能像单片大芯片一样运作。- 6
- 0
cpu
❯
个人中心
今日签到
搜索
扫码打开当前页
返回顶部
幸运之星正在降临...
点击领取今天的签到奖励!
恭喜!您今天获得了{{mission.data.mission.credit}}积分
我的优惠劵
- ¥优惠劵使用时效:无法使用使用时效:
之前
使用时效:永久有效优惠劵ID:×
没有优惠劵可用!