速度提高1000万倍,AI快速准确预测等离子体加热,助力核聚变研究

编辑 | 白菜叶用于等离子体加热的新型人工智能(AI)模型所能做的事情超出了人们之前的想象,不仅可以在保持准确性的情况下将预测速度提高 1000 万倍,而且还可以在原始数值代码失效的情况下正确预测等离子体加热。「凭借我们的智能,我们可以训练人工智能超越现有数值模型的限制。」美国能源部 (DOE) 普林斯顿等离子体物理实验室 (PPPL) 的副研究员、物理学家 Álvaro Sánchez-Villar 说道。

图片

编辑 | 白菜叶

用于等离子体加热的新型人工智能(AI)模型所能做的事情超出了人们之前的想象,不仅可以在保持准确性的情况下将预测速度提高 1000 万倍,而且还可以在原始数值代码失效的情况下正确预测等离子体加热。

「凭借我们的智能,我们可以训练人工智能超越现有数值模型的限制。」美国能源部 (DOE) 普林斯顿等离子体物理实验室 (PPPL) 的副研究员、物理学家 Álvaro Sánchez-Villar 说道。

Sánchez-Villar 的团队开发了 NSTX 和 WEST 上的实时核心离子回旋加速器频率范围 (ICRF) 加热模型。该模型基于两种非线性回归算法,即决策树的随机森林集成和多层感知器神经网络。

该研究以「Real-time capable modeling of ICRF heating on NSTX and WEST via machine learning approaches」为题,于 2024 年 8 月 12 日发布在《Nuclear Fusion》。

图片

射频(RF)波加热系统是用来辅助加热磁约束聚变装置的重要方法之一,其中的离子回旋频率范围(ICRF)加热对托卡马克装置的运行效果和稳定性非常重要。

托卡马克中的等离子体变化通常需要用复杂的数学模型来计算,但这些模型太耗时,无法用于实时控制。

因此,科学家们开始使用机器学习技术开发快速的替代模型,这些模型是根据计算机代码生成的数据进行训练的,可以在保持精度的同时能大大缩短计算时间。虽然大部分数据与过去的结果一致,但在某些极端情况下,数据并不理想。

「我们观察到一种参数化状态,其中加热曲线在相当任意的位置出现不规则的尖峰。」Sánchez-Villar 说,「没有任何物理现象可以解释这些尖峰。」

Sánchez-Villar 识别并删除了训练集中有问题的数据(称为异常值),以训练他们的 AI,因为这些场景不符合物理规律。「我们通过消除训练数据集中的峰值来偏差我们的模型,但我们仍然能够预测物理现象。」Sánchez-Villar 说道。

图片

图示:氘的加热曲线如图 (d) 小幅、(e) 大幅和 (f) 临界异常情况所示。(来源:论文)

「正如所观察到的,代码正确地消除了尖峰,但预计突出显示的区域会产生更高的热量。然而,没有任何证据可以保证这些预测是物理的。」

然后,团队又向前迈进了一步。经过数月的研究,Sánchez-Villar 发现并解决了问题,即数值模型的局限性。随后,他针对最初显示随机峰值的异常情况运行了修正版代码。

他不仅发现在所有有问题的情况下,解决方案都没有出现峰值,而且令他惊讶的是,即使在关键的异常场景中,这些解决方案也几乎与几个月前预测的机器学习模型中的解决方案相同。

「这意味着,实际上,我们的替代实施相当于修复原始代码,只是基于对数据的精心管理,」Sánchez-Villar 说。「与每一项技术一样,通过智能使用,人工智能不仅可以帮助我们更快地解决问题,而且比以前更好,并克服我们人类自身的限制。」

他的团队开发了 NSTX 和 WEST 上的实时核心 ICRF 加热模型。该模型基于两种非线性回归算法,即决策树的随机森林集成和多层感知器神经网络。这些算法是在 TORIC ICRF 光谱求解器模拟中训练的,该模拟假设了麦克斯韦等离子体,NSTX 和 WEST 中预期的平顶操作场景。

图片

图示:NSTX 和 WEST 数据库使用的平衡配置,分别对应于第 138,506 次和第 56,898 次拍摄。(来源:论文)

正如预期的那样,这些模型还缩短了 ICRF 加热的计算时间。这些时间从大约 60 秒缩短到 2 微秒,从而能够加快模拟速度,而不会明显影响准确性。这一改进将帮助科学家和工程师探索使核聚变成为实用电源的最佳方法。

论文链接:https://iopscience.iop.org/article/10.1088/1741-4326/ad645d

相关内容:https://phys.org/news/2024-10-ai-plasma-important-code-fusion.html

相关资讯

核聚变发电有希望了?美国或宣布首次实现核聚变能量增益,输出大于输入

在这个寒冷的冬天,相信很多人都体会到了能源的重要性。

快速筛选海量数据,即时做出明智决策,MIT、普林斯顿&卡内基梅隆大学团队利用LLM进行聚变研究

编辑 | X可控核聚变能具有安全、清洁、燃料丰富等优点,是解决人类未来能源问题的主要选择之一。也许最有前途的核聚变装置是托卡马克(Tokamak)。尽管前景光明,但在人类和经济型托卡马克发电厂之间仍然存在重要的悬而未决的问题。自核聚变研究开始以来,科学家们已经发表了数千份有关该主题的文件——论文、会议记录,甚至是世界各地聚变反应堆先前实验的书面日志。这样的信息源泉可能需要用一辈子的时间来阅读,甚至需要更长的时间来理解。然而,在圣地亚哥 DIII-D 国家聚变设施进行的实际聚变实验中,研究人员在两次试验之间只有大约

登Science,速度和准确性均超越人类化学家,且具独创性,AI自主化学合成机器人加速化学发现

编辑 | X最近,在光化学和光催化方面的研究出现了惊人的爆发,部分原因在于光作为反应源对环境无害。然而,许多研究展示的是小规模反应,而扩大规模依赖于不同技术的拼凑,可能需要大量的试验和错误来优化。针对复杂光催化反应条件高效优化的需求,荷兰阿姆斯特丹大学 (UvA) 范特霍夫(Van 't Hoff)分子科学研究所的 Timothy Noël 教授团队,开发了一种集成人工智能驱动机器学习单元的自主化学合成机器人。这款台式设备被称为「RoboChem」,在速度和准确性方面都超过了人类化学家,同时还表现出高水平的独创性。