类Sora模型到底懂不懂物理?字节完成系统性实验,图灵奖得主杨立昆赞转!

Sora爆火以来,“视频生成模型到底懂不懂物理规律”受到热议,但业界一直未有研究证实。 近日,字节跳动豆包大模型团队公布最新论文,研究历时8个月,围绕“视频生成模型距离世界模型有多远”首次在业界完成系统性实验并给出明确结论:视频生成模型可以记忆训练案例,但暂时还无法真正理解物理规律,做到“举一反三”。 图灵奖得主、Meta首席AI科学家杨立昆点赞并转发了该研究,表示“结论不令人意外,但很高兴终于有人做了这个尝试!

Sora爆火以来,“视频生成模型到底懂不懂物理规律”受到热议,但业界一直未有研究证实。近日,字节跳动豆包大模型团队公布最新论文,研究历时8个月,围绕“视频生成模型距离世界模型有多远”首次在业界完成系统性实验并给出明确结论:视频生成模型可以记忆训练案例,但暂时还无法真正理解物理规律,做到“举一反三”。

图灵奖得主、Meta首席AI科学家杨立昆点赞并转发了该研究,表示“结论不令人意外,但很高兴终于有人做了这个尝试!”

类Sora模型到底懂不懂物理?字节完成系统性实验,图灵奖得主杨立昆赞转!

自OpenAI发布Sora模型以来,很多视频生成模型都会强调其生成结果对物理规律的遵循。豆包大模型视觉团队相关小组,对视频生成模型究竟能否从视觉数据中“发现”并“理解”物理定律感到好奇,决定深入研究。

历时8个月,该团队完成了业界首个系统性的实验研究。团队通过专门开发的物理引擎合成了匀速直接运动、小球碰撞、抛物线运动等经典物理场景的运动视频,用于训练基于主流DiT架构的视频生成模型。然后,通过检验模型后续生成的视频在运动和碰撞方面是否符合力学定律,判断模型是否真正理解了物理规律,并具有“世界模型”的潜力。

类Sora模型到底懂不懂物理?字节完成系统性实验,图灵奖得主杨立昆赞转!

实验中设计的不同运动场景

豆包大模型团队的实验发现,即使遵循“Scaling Law”增大模型参数规模和数据量,模型依然无法抽象出一般物理规则,做到真正“理解”。

以最简单的匀速直线运动为例,当模型学习了不同速度下小球保持匀速直线运动的训练数据后,给定初始几帧,要求模型生成小球在训练集速度区间内匀速直线运动的视频,随着模型参数和训练数据量的增加,生成的视频逐渐更符合物理规律。

然而,当要求模型生成未曾见过的速度区间(即超出训练数据范围)的运动视频时,模型突然不再遵循物理规律,并且无论如何增加模型参数或训练数据,生成的结果都没有显著改进。这表明,视频生成模型无法真正理解物理规律,也无法将这些规律泛化应用到全新的场景中。

通过进一步的实验分析,研究团队得出结论,“生成新视频时,模型主要依赖对训练案例的记忆和匹配。视频生成模型就像一个只会‘抄作业’的学生,一旦遇到从未见过的场景,如不同大小、速度的物体相互作用,就会‘犯迷糊’,生成结果与物理规则不符。”

不过,研究中也有一个好消息:如果训练视频中所有概念和物体都是模型已熟悉的,此时加大训练视频的复杂度,比如组合增加物体间的物理交互,通过加大训练数据,模型对物理规律的遵循将越来越好。这一结果可为视频生成模型继续提升表现提供启发。

据了解,本研究两位核心一作都非常年轻,一位是95后,一位是00后,在豆包大模型团队专注视觉领域的基础研究工作。作者们一直对世界模型感兴趣,在8个月的探索中,他们阅读了大量物理学研究文献,也尝试从游戏中获得研发灵感,历经多次失败后,最终一步步确定研究思路和实验方法。

今年以来,字节跳动在大模型领域不断加大投入,底层研究、基础模型、AI应用均有亮眼产出。不久前,字节豆包大模型团队还发起了Top Seed人才计划,在全球范围持续招募大语言模型、视觉、语音、大模型基座等领域的顶尖研究人才,提供充分的创新探索空间。

研究论文链接:https://arxiv.org/pdf/2411.02385

研究成果网站:https://phyworld.github.io/#combo_gen

相关资讯

首次尝试!深度学习从原始视频中发现未知输入激励的动力系统的可解释物理定律

编辑/绿萝由于深度学习的发展进步,从视频中提取可解释的物理定律引发了计算机视觉社区的兴趣,但仍然面临巨大的挑战。控制方程(例如 PDE、ODE)的发现可能促进我们对复杂动力系统行为的理解、建模和预测。收集数据的日益丰富和机器学习的进步带来了动态系统建模的新视角。近日,来自中国人民大学和中国科学院大学、美国东北大学的研究团队提出了一个端到端的无监督深度学习框架,根据录制的视频揭示运动物体呈现的显式动力学控制方程。模拟动态场景的实验表明,所提出的方法能够提取封闭形式的控制方程并同时识别视频记录的多个动力系统的未知激励输

MIT、IBM 团队巧妙的 AI 方法来解决「蛮力」数学问题

编辑 | X自牛顿时代以来,自然的基本定律——光学、声学、工程学、电子学,最终都归结为一组重要的、广泛的方程。现在,研究人员找到了一种新方法,可以使用受大脑启发的神经网络来比以前更有效地求解这些方程,在科学和工程领域有许多潜在的应用。相关研究以《Physics-enhanced deep surrogates for partial differential equations》为题,发布在《Nature Machine Intelligence》上。论文链接:,偏微分方程有助于对涉及多种变化率的复杂物理系统进行建

打破「非此即彼」,平衡 AI 与物理,中国科学院提出建立可学习的气候模型

平衡 AI-物理模型示意图。编辑 | X人工智能(AI)迅速发展,大模型正在重新定义我们理解和应对气候挑战的方式。AI 模型已经席卷了大气科学的各个领域。今年年初,中国科学院大气物理研究所黄刚研究员团队将物理与 AI 融合,提升了数值模式的降水预报技巧。近日,黄刚团队联合中国科学院大学、青岛海洋科学与技术国家实验室、同济大学和首尔国立大学在《Advances in Atmospheric Sciences》上,发表了题为「Toward a Learnable Climate Model in the Artific