比原始分辨率高36倍,北航、清华团队用AI在多空间组学平台上高分辨率表征组织,登Nature子刊

编辑 | 萝卜皮空间组学的最新进展已将分子类别分析的范围扩展到转录组学之外。然而,许多此类技术都受到空间分辨率的限制,阻碍了科学家深入表征复杂组织结构的能力。现有的计算方法主要侧重于转录组学数据的分辨率增强,缺乏针对各种组学类型的新兴空间组学技术的适应性。在这里,北京航空航天大学和清华大学的研究人员提出了 soScope,这是一个统一的生成框架,旨在提高从各种空间组学技术获得的分子谱的数据质量和空间分辨率。soScope 可以汇总来自组学、空间关系和图像的多模态组织信息,并通过分布先验与组学特定建模联合推断出具有增

比原始分辨率高36倍,北航、清华团队用AI在多空间组学平台上高分辨率表征组织,登Nature子刊

编辑 | 萝卜皮

空间组学的最新进展已将分子类别分析的范围扩展到转录组学之外。然而,许多此类技术都受到空间分辨率的限制,阻碍了科学家深入表征复杂组织结构的能力。现有的计算方法主要侧重于转录组学数据的分辨率增强,缺乏针对各种组学类型的新兴空间组学技术的适应性。

在这里,北京航空航天大学和清华大学的研究人员提出了 soScope,这是一个统一的生成框架,旨在提高从各种空间组学技术获得的分子谱的数据质量和空间分辨率。

soScope 可以汇总来自组学、空间关系和图像的多模态组织信息,并通过分布先验与组学特定建模联合推断出具有增强分辨率的组学谱。

通过对 Visium、Xenium、spatial-CUT&Tag、slide-DNA/RNA-seq 等多种空间组学平台的综合评估,soScope 提高了识别具有生物学意义的肠道和肾脏结构的性能,揭示了无法以原始分辨率解决的胚胎心脏结构,并纠正了测序和样本处理中出现的样本和技术偏差。

此外,soScope 扩展到空间多组学技术 spatial-CITE-seq 和空间 ATAC-RNA-seq,利用跨组学参考同时进行多组学增强。soScope 提供了一种多功能工具来提高不断扩展的空间组学技术和资源的利用率。

该研究以「Tissue characterization at an enhanced resolution across spatial omics platforms with deep generative model」为题,于 2024 年 8 月 2 日发布在《Nature Communications》。

图片

组织是由具有不同分子状态和空间组织的细胞构成的。空间组学技术近年来取得了显著进展,可以在保持空间背景的同时,对各种分子类别进行空间分析。

这些技术在多种生物领域中提供了重要见解,虽然取得了早期成功,但仍面临两个主要挑战:冷冻或福尔马林固定的组织可能影响分子状态,降低测序准确性;同时,大多数技术的空间分辨率有限,难以揭示组织结构的细微异质性。

虽然计算技术能够改善空间组学数据的分辨率,但目前的方法大多仅针对单一组织模态,难以充分利用多模态信息。

在这里,北航和清华的研究团队引入了空间组学范围(soScope),这是一个完全生成的框架,它模拟来自不同空间组学技术的点级概况的生成过程,旨在提高它们的空间分辨率和数据质量。

为了实现这一目标,soScope 将每个点视为增强空间分辨率的“子点”的集合,其组学特征与空间位置和形态模式相关。

然后,soScope 使用多模态深度学习框架整合斑点组学概况、空间关系和高分辨率形态学图像,并联合推断子斑点分辨率下的组学概况。通过选择组学特定分布,soScope 可以对不同的空间组学数据进行精确建模和减少变异。

图片

图示:soScope 及其应用的概述。(来源:论文)

soScope 提供了一种统一的工具,该工具结合了多模态组织图谱,以增强具有不同分子类别的组学图谱。soScope 可以有效提高空间分辨率,减少不必要的变化,并能够表征无法在原始分辨率下检测到的复杂组织结构。

图片

图示:对来自多种组织和平台的空间转录组学数据集上的 soScope 进行评估。(来源:论文)

该团队广泛评估了 soScope 对通过多种空间技术分析的多种分子类型的有效性和普遍性,包括 Visium、Xenium、spatial-CUT&Tag、slide-DNA-seq、slide-RNA-seq、spatial-CITE-seq 和 spatial ATAC-RNA-seq。

在健康和患病组织中,soScope 改进了组织域识别,提高了已知标记的可区分性,并纠正了数据和技术偏差。该方法能够揭示比原始分辨率高出 36 倍的更精细的组织结构。它可以有效地适应空间多组学数据,以同时增强多组学概况。

研究人员注意到,有几种基于成像的空间组学技术,例如 seqFISH、STARmap 和 MERFISH,它们可以直接实现单细胞分辨率的空间分析,但代价是组学通量较低和组织区域较小。虽然 soScope 为预先指定的亚点或细胞位置提供了增强的配置文件,但它可能无法达到亚细胞分辨率。

图片

图示:使用空间 CITE-seq 将多组学 soScope 应用于来自人体皮肤组织的空间蛋白质 + 转录数据集。(来源:论文)

为了进一步提高分辨率,可以修改 soScope 以包含来自同一组织的配对单细胞组学数据,以更高分辨率为亚点推断提供信息。此外,soScope 还整合了 H&E 图像作为输入,在某些临床研究中,人类专家可以轻松对其进行注释。研究人员可以修改 soScope,以整合人类标签并以半监督方式指导后验推理,以改进潜在表征和概况学习。

对于包含来自同一器官的多个连续切片的较大数据集,soScope 可以在部分数据上进行训练并应用于其余组织切片,以降低计算成本。

随着可用空间组学数据资源的不断扩展和新空间技术的出现,研究人员相信 soScope 有潜力成为一种多功能工具,充分利用空间组学数据并增强科学家对复杂组织结构和生物过程的理解。

论文链接:https://www.nature.com/articles/s41467-024-50837-5

相关资讯

SOTA性能,厦大多模态蛋白质-配体亲和力预测AI方法,首次结合分子表面信息

编辑 | KX在药物研发领域,准确有效地预测蛋白质与配体的结合亲和力对于药物筛选和优化至关重要。然而,目前的研究没有考虑到分子表面信息在蛋白质-配体相互作用中的重要作用。基于此,来自厦门大学的研究人员提出了一种新颖的多模态特征提取(MFE)框架,该框架首次结合了蛋白质表面、3D 结构和序列的信息,并使用交叉注意机制进行不同模态之间的特征对齐。实验结果表明,该方法在预测蛋白质-配体结合亲和力方面取得了最先进的性能。此外,消融研究证明了该框架内蛋白质表面信息和多模态特征对齐的有效性和必要性。相关研究以「Surface-

总奖金15万!第三届Person in Context竞赛 with CVPR 2021 开始报名!

主办方联合阿里巴巴淘系技术,奇虎360、商汤、马达智数等单位在CVPR2021上举办第三届Person in Context 竞赛。

北京航空航天大学发布“小航”AI 助手:200 PFlops 算力、12PB 存储能力

AI在线从北京航空航天大学获悉,8 月 8 日上午,该校发布了开放式私域 AI 大模型“小航”。“小航”是一个开放的 AI 底座,其融合了开放、私域的设计理念,不仅实现了私域数据的自主可控和协同计算,同时具备领域知识的专项学习能力。据北航国新院“小航”研发团队介绍,“小航”有如下创新特色:“超强大脑”:“小航”系全国产超大规模的智算平台,其硬件资源部署在北航杭州国际校园,在架构设计上,具有高可靠、高安全、高速率、高扩展等优势,配备了百台千卡的智算集群,提供的算力高达 200 PFlops,并且具备高达 12PB 的