SOTA性能,厦大多模态蛋白质-配体亲和力预测AI方法,首次结合分子表面信息

编辑 | KX在药物研发领域,准确有效地预测蛋白质与配体的结合亲和力对于药物筛选和优化至关重要。然而,目前的研究没有考虑到分子表面信息在蛋白质-配体相互作用中的重要作用。基于此,来自厦门大学的研究人员提出了一种新颖的多模态特征提取(MFE)框架,该框架首次结合了蛋白质表面、3D 结构和序列的信息,并使用交叉注意机制进行不同模态之间的特征对齐。实验结果表明,该方法在预测蛋白质-配体结合亲和力方面取得了最先进的性能。此外,消融研究证明了该框架内蛋白质表面信息和多模态特征对齐的有效性和必要性。相关研究以「Surface-

图片

编辑 | KX

在药物研发领域,准确有效地预测蛋白质与配体的结合亲和力对于药物筛选和优化至关重要。然而,目前的研究没有考虑到分子表面信息在蛋白质-配体相互作用中的重要作用。

基于此,来自厦门大学的研究人员提出了一种新颖的多模态特征提取(MFE)框架,该框架首次结合了蛋白质表面、3D 结构和序列的信息,并使用交叉注意机制进行不同模态之间的特征对齐。

实验结果表明,该方法在预测蛋白质-配体结合亲和力方面取得了最先进的性能。此外,消融研究证明了该框架内蛋白质表面信息和多模态特征对齐的有效性和必要性。

相关研究以「Surface-based multimodal protein–ligand binding affinity prediction」为题,于 6 月 21 日发布在《Bioinformatics》上。

图片

论文链接:https://academic.oup.com/bioinformatics/article/40/7/btae413/7697100

gitHub 地址:https://github.com/Sultans0fSwing/MFE

蛋白质-配体结合亲和力预测研究

作为药物发现的关键阶段,预测蛋白质-配体结合亲和力,长期以来得到了广泛的研究,这对于高效、准确的药物筛选至关重要。

传统的计算机辅助药物发现工具使用评分函数(SF)粗略估计蛋白质-配体结合亲和力,但准确性较低。分子动力学模拟方法可以提供更准确的结合亲和力估计,但通常成本高昂且耗时。

随着计算技术的发展和大规模生物数据的日益丰富,基于深度学习的方法在蛋白质-配体结合亲和力预测领域显示出巨大的潜力。

然而,目前的研究主要利用基于序列或结构的表示来预测蛋白质-配体的结合亲和力,对蛋白质-配体相互作用至关重要的蛋白质表面信息的研究相对较少。

分子表面是蛋白质结构的高级表示,它表现出化学和几何特征模式,可作为蛋白质与其他生物分子相互作用模式的指纹。因此,一些研究开始使用蛋白质表面信息来预测蛋白质-配体结合亲和力。

但现有的方法主要关注单模态数据,忽略了蛋白质的多模态信息。此外,在处理蛋白质的多模态信息时,传统方法通常以直接的方式连接来自不同模态的特征,而不考虑它们之间的异质性,这导致无法有效利用模态之间的互补性。

新颖的多模态特征提取框架

在此,研究人员提出了一种新颖的多模态特征提取 (MFE) 框架,该框架首次结合了来自蛋白质表面、3D 结构和序列的信息。

图片

图 1:MFE 框架。(来源:论文)

具体来说,研究设计了两个主要组件:蛋白质特征提取模块和多模态特征比对模块。

蛋白质特征提取模块用于从蛋白质表面、结构和序列信息中提取初始嵌入。

在多模态特征比对模块中,使用交叉注意机制实现蛋白质结构、序列嵌入和表面嵌入之间的特征比对,以获得统一且信息丰富的特征嵌入。

与目前最先进的方法相比,所提出的框架在蛋白质-配体结合亲和力预测任务上取得了最佳效果。

SOTA 性能

表 1 展示了 MFE 和其他基线模型在蛋白质-配体结合亲和力预测任务上的结果。所有模型都使用相同的训练集和验证集划分方法,并在 PDBbind 核心集(版本 2016)上进行测试。可以发现,与所有基线相比,MFE 方法实现了 SOTA 性能。

图片

消融研究

为了进一步证明不同模态特征和特征比对的有效性和必要性,研究人员进行了以下消融研究:W/O 蛋白质表面信息、W/O 蛋白质结构信息、W/O 蛋白质序列信息和无特征比对。结果如表 2 和图 2 所示。

图片

图 2:消融研究结果。(来源:论文)

结果表明,当去除表面信息时,性能会明显下降,这表明表面信息在模型中起着至关重要的作用。同样,排除结构或序列信息都会导致性能下降,而序列信息的消除会导致更明显的下降。这是因为序列信息包含了蛋白质的全局信息,这对于模型对蛋白质的全面理解至关重要。

此外,在没有特征比对的情况下,模型的性能会下降。这强调了特征比对在处理多模态数据中的重要性,因为它有助于减少不同模态特征之间的异质性,从而提高模型有效整合不同模态特征的能力。

图片

超参数分析

为了研究不同超参数对模型性能的影响,研究人员进行了以下三个实验:(i)MFE-A-6:仅使用 6 种基本原子类型来表示表面的化学特性,包括氢、碳、氮、氧、磷、硫;(ii)MFE-P-256:仅选择最靠近配体中心的 256 个表面点作为蛋白质口袋表面;(iii)MFE-P-1024:选择最靠近配体中心的 1024 个表面点作为蛋白质口袋表面。

图 3 为三种不同的超参数选择方法在蛋白质-配体结合亲和力预测任务上的结果。

图片

图 3:超参数分析。(来源:论文)

特征对齐分析与可视化

为了深入研究特征对齐对模型性能的影响,研究人员使用主成分分析 (PCA) 对测试集中的蛋白质表面、结构和序列特征进行降维和可视化分析。此方法旨在确定特征对齐是否可以减轻多模态嵌入之间的异质性。

图片

图 4:特征比对前(a)和特征比对后(b)的蛋白质表面、结构和序列嵌入降维可视化结果。(来源:论文)

研究发现,特征对齐显著增强了蛋白质表面、结构和序列嵌入之间的一致性。这是由于通过注意力机制优化了 Transformer 中的多模态特征交互,该机制计算了不同特征之间的注意力权重。这增强了模型捕获关键信息的能力,使来自不同模态的数据在特征空间中更紧密地聚集,从而减少了模型识别蛋白质-配体相互作用时的噪音和错误。

最后,研究人员总结道,「总之,通过研究蛋白质的表面,我们可以更深入地了解蛋白质如何与其他生物分子相互作用。在未来的工作中,我们将更彻底地探索蛋白质表面,以揭示它们在生物信息学中的更广泛应用。」

注:封面来自网络

相关资讯

比原始分辨率高36倍,北航、清华团队用AI在多空间组学平台上高分辨率表征组织,登Nature子刊

编辑 | 萝卜皮空间组学的最新进展已将分子类别分析的范围扩展到转录组学之外。然而,许多此类技术都受到空间分辨率的限制,阻碍了科学家深入表征复杂组织结构的能力。现有的计算方法主要侧重于转录组学数据的分辨率增强,缺乏针对各种组学类型的新兴空间组学技术的适应性。在这里,北京航空航天大学和清华大学的研究人员提出了 soScope,这是一个统一的生成框架,旨在提高从各种空间组学技术获得的分子谱的数据质量和空间分辨率。soScope 可以汇总来自组学、空间关系和图像的多模态组织信息,并通过分布先验与组学特定建模联合推断出具有增

计算生物学家​Anne Carpenter谈:机器学习将高维的生物学问题简化

编译/凯霞今天,生物医学研究人员可以通过使用机器学习进行基于图像的分析,有效地对显微镜图像中的数千个细胞进行分类。计算生物学家 Anne Carpenter 是开发这些自动化工具的先驱。你不能通过封面来判断一本书,也就是,你不能以貌取人,至少我们是这么了解人的。然而,对于细胞来说,令人惊讶的是,事实并非如此。使用类似于计算机识别面部的机器学习方法,生物学家可以表征显微图像堆栈中的单个细胞。通过测量数以千计的可视化细胞特性——标记蛋白的分布、细胞核的形状、线粒体的数量——计算机可以从细胞图像中挖掘出识别细胞类型和疾病

AlphaFold3开源了,诺奖AI工具人人可用,开启生物分子设计新时代

编辑 | ScienceAIAlphaFold3 终于开源了。 六个月前 AlphaFold3 发布的时候,谷歌 DeepMind 没有公布其论文代码,因此引发了学界的巨大争议。 如今,DeepMind 于 11 月 11 日宣布,科学家现在可以免费下载软件代码,并将 AlphaFold3 用于非商业应用。