杨笛一新作:社恐有救了,AI大模型一对一陪聊,帮i人变成e人

在社交活动中,大语言模型既可以是你的合作伙伴(partner),也可以成为你的导师(mentor)。在人类的社交活动中,为了更有效地在工作和生活中与他人沟通,需要一定的社交技能,比如解决冲突。然而,社交技能的练习环境对于大多数人来说通常是遥不可及的。特别是由专家训练这些技能时,往往耗时、投入高且可用性有限。现有的练习和反馈机制很大程度上依赖专家监督,使训练难以扩展。此外,经过专业培训的教练也缺乏,而大多数可以提供定制化反馈的教练无法帮助大量有需要的人。近日,在由斯坦福助理教授杨笛一为共同一作的论文《Social S

在社交活动中,大语言模型既可以是你的合作伙伴(partner),也可以成为你的导师(mentor)。

在人类的社交活动中,为了更有效地在工作和生活中与他人沟通,需要一定的社交技能,比如解决冲突。

然而,社交技能的练习环境对于大多数人来说通常是遥不可及的。特别是由专家训练这些技能时,往往耗时、投入高且可用性有限。现有的练习和反馈机制很大程度上依赖专家监督,使训练难以扩展。此外,经过专业培训的教练也缺乏,而大多数可以提供定制化反馈的教练无法帮助大量有需要的人。

近日,在由斯坦福助理教授杨笛一为共同一作的论文《Social Skill Training with Large Language Models》中,研究者认为,借助大语言模型可以使得社交技能训练变得更容易、更安全、更有吸引力,并在现实、虚拟练习空间中提供量身定制的反馈。

图片

论文地址:https://arxiv.org/pdf/2404.04204.pdf

具体来讲,研究者提出了以下两种社交技能训练框架。

第一个训练框架是 AI Partner,它可以通过模拟练习为体验式训练提供可扩展的解决方案。此前已经有研究表明,人类角色扮演可以有效地教授沟通、合作和领导技能。与 on-the-job 训练相比,模拟可以让学习者承担更少的风险和机会成本。而通过模拟,AI Partner 将减少进入专业领域的社会经济障碍。

第二个补充训练框架是 AI Mentor, 它将根据领域专业知识和事实知识提供个性化反馈。

这两个训练框架(合称为 APAM)都可以将体验式学习与现实练习、定制反馈相结合。研究者呼吁通过跨学科创新来解决 APAM 的广泛影响。

论文作者杨笛一表示:「学习社交技能对大多数人来说是遥不可及的,我们如何才能使社交技能训练变得更容易实现?基于此,我们推出 APAM,其利用 LLM 通过现实实践和量身定制的反馈进行社交技能训练!」

图片

她接着表示:「在 APAM 中,当用户想要学习一项新的社交技能时,AI Partner 可以帮助他们通过模拟对话来练习相关场景。AI Mentor 可以在模拟的关键时刻提供基于知识的反馈。」

图片

APAM 架构概览

该研究提出了一个通用框架专门用于社交技能训练,该框架包括 AI Partner 和 AI Mentor(两者简称 APAM),并且这两者至关重要。当用户想要学习一项新的社交技能时,AI Partner 可以通过模拟对话帮助他们练习相关场景。AI Mentor 可以在模拟的关键时刻提供基于知识的反馈。

图片

然而,构建和部署 AI Partner 并非易事,比如很难保持模拟人物的风格、行为和情感特征的一致性。而开发 AI Mentor 在很大程度上依赖于领域专业知识、情境感知和反馈效率等因素。

为了解决上述问题,研究者提出通过 LLM 进行社交技能训练的通用方法,分四个步骤完成:

了解如何解决问题的技能(例如,解决冲突);

设计一个 AI partner 来模拟对话,让学习者(即用户)接触目标过程,进行练习; 

创建一个 AI mentor 来提供反馈; 

将这两个智能体集成到模拟环境中,以便用户学习。 

研究者表示,APAM 框架的理想受众是初学者,但是有经验的人也可以使用 APAM 系统来刷新他们的知识。

APAM 可以在许多领域提高学习者的技能,表 1 列举了一些应用场景,例如如何倾听、心理健康咨询等。不过 APAM 框架不仅限于这些典型的例子,论文第 6 节有更多的介绍。

图片

虽然 LLM 作为社交技能训练工具潜力巨大,因为它们可以生成连贯且自然的文本。然而,这种灵活性往往伴随着有限的可控性。

出于安全考虑, APAM 框架为如何应用 AI 提供了一系列措施,他们将使用过程分解为一个连续体:AI Partner 连续体以及 AI Mentor 连续体,每个连续体都由三个模型完成(如图 1 所示)。

评估结果

AI partner 和 AI mentor 的评估是一个重大挑战,基于 APAM 的工具涉及复杂的计算系统以及与不同需求和背景的用户的交互。

为了将这些训练工具开发为一个领域,评估措施需要超越自然语言处理中传统的指标,转而采用来自多个相关领域和利益相关者的方案。纳入多学科视角将有助于评估此类系统的实证性能、基于用户角度的可用性以及对用户和社区的长期影响。

目前,文本生成的研究主要集中在内在评估上,即通过预定义的规则或交互来评估输出的质量。

在下表 2 中,研究者主要划分为全自动评估和用户驱动评估。基于参考的指标(如困惑度或 Kullback-Leibler 散度)通常用于系统质量自动评估,它们既简单又允许通过演示对所需行为进行丰富的定义。

表 2 详细列出了以往工作中适用于 APAM 系统的内在和外在评估程序。目前,自然语言处理从业者主要关注对系统的内在评估。本文中,研究者强调使用既定的教育成果衡量标准来评估 APAM 系统的重要性。

图片

更多细节请参阅原论文。

相关资讯

简化芯片设计传统,AI训练的新型算法正改变芯片研发范式

编辑丨&自1971年第一个商用微处理器的草图面世以来,芯片设计已经取得了长足的进步。 但是,随着芯片变得越来越复杂,设计人员必须解决的问题也越来越复杂。 而我们目前的工具并不总是能胜任这项任务。

消息称英伟达有意收购 AI 基础设施虚拟化创企 Run:ai,交易金额最高十亿美元

据外媒 SiliconANGLE 报道,英伟达有意收购 AI 基础设施虚拟化初创企业 Run:ai,交易金额最高可达 10 亿美元(IT之家备注:当前约 72 亿元人民币)。Run:ai 的同名工作负载管理平台近日率先获得英伟达 DGX SuperPOD 认证。其 AI 编排技术可帮助用户轻松运行 AI 和机器学习项目,满足对生成式 AI 和大模型不断增长的要求。Run:ai 由其 CEO 奥姆里・盖勒(Omri Geller)和 CTO 罗宁・达尔(Ronen Dar)于 2018 年创立。两人是在特拉维夫大学电

Meta AI 全球市场扩张,并上线网页版 meta.ai

Meta 公司近日宣布 Llama 3 大语言模型之外,扩展 Meta AI 服务到美国之外的 13 个国家和地区,还宣布上线专门的聊天网站:meta.ai。Meta 公司在新闻稿中表示开始在全球市场扩展 Meta AI,在澳大利亚、加拿大、南非和新加坡等国家和地区推出英语版本。IT之家附上 Meta AI 扩展的国家和地区如下澳大利亚加拿大加纳牙买加马拉维新西兰尼日利亚巴基斯坦新加坡南非乌干达赞比亚津巴布韦Meta AI 整合了 Llama 3 大语言模型,速度更快、智能性更高、功能更强,是执行各种任务的理想选择