X-Dreamer

弥合2D和3D生成领域之间的次元壁,X-Dreamer实现高质量的文本到3D生成

本文介绍了一个名为 X-Dreamer 的框架,它主要由 CG-LoRA 和 AMA 损失两种关键创新组成,实现了弥合 text-to-2D 和 text-to-3D 间的领域差距,实现了高质量的 3D 生成。近年来,在预训练的扩散模型 [1, 2, 3] 的开发推动下,自动 text-to-3D 内容创建取得了重大进展。其中,DreamFusion [4] 引入了一种有效的方法,该方法利用预训练的 2D 扩散模型 [5] 从文本中自动生成 3D 资产,从而无需专门的 3D 资产数据集。DreamFusion 引入
  • 1