上下文长度
无需训练!Q-Filters 实现 KV 缓存高效压缩,提升推理性能
近年来,基于 Transformer 架构的大型语言模型(LLMs)取得了显著进展,诸如 Gemini-Pro1.5、Claude-3、GPT-4和 Llama-3.1等新模型能够处理成百上千的token。 然而,这些扩展的上下文长度带来了实际应用中的一些重大挑战。 随着序列长度的增加,解码延迟上升,内存限制也成为了一个严重的瓶颈。
3/12/2025 11:03:15 AM
AI在线
- 1
资讯热榜
标签云
人工智能
OpenAI
AIGC
AI
ChatGPT
AI绘画
DeepSeek
机器人
数据
谷歌
模型
大模型
Midjourney
智能
用户
学习
GPT
开源
微软
AI创作
图像
Meta
技术
论文
Stable Diffusion
马斯克
算法
Gemini
蛋白质
生成式
芯片
代码
神经网络
腾讯
英伟达
计算
研究
Sora
AI for Science
AI设计
3D
机器学习
GPU
开发者
场景
Anthropic
华为
预测
伟达
Transformer
深度学习
模态
百度
AI视频
苹果
文本
驾驶
搜索
xAI
神器推荐
Copilot
人形机器人
具身智能
LLaMA
安全
算力
大语言模型
视频生成
应用
字节跳动
科技
Claude
干货合集
视觉
2024
AGI
特斯拉
亚马逊
架构
语音