LazyLLM
苹果让大模型学会偷懒:更快吐出第一个token,准确度还保住了
偷懒才能更好地工作。Llama 3.1 刚刚发布,你是否已经尝试了呢?就算你的个人计算机是最近的顶尖配置,运行其中最小的 8B 版本可能也依然会有明显延迟。为了提升模型的推理效率,研究者想出了多种多样的方法,但其中很多都会让模型牺牲一些准确度。近日,苹果和 Meta AI 的一个研究团队提出了一种新方法,可在保证准确度不明显下降的同时,将 Llama 2 预填充阶段的推理速度提升到原来的 2 倍以上,这或许能为 Llama 3.1 的加速提供一些启发。他们把这种方法称为 LazyLLM,即懒惰大型语言模型。论文标题
8/2/2024 2:40:00 PM
机器之心
- 1
资讯热榜
标签云
人工智能
AIGC
OpenAI
AI绘画
ChatGPT
机器人
数据
谷歌
智能
Midjourney
大模型
学习
GPT
DeepSeek
用户
AI创作
微软
图像
AI
开源
Meta
技术
论文
Stable Diffusion
算法
生成式
蛋白质
马斯克
芯片
Gemini
计算
神经网络
代码
AI设计
Sora
研究
腾讯
3D
开发者
GPU
场景
伟达
英伟达
预测
机器学习
模态
华为
Transformer
模型
文本
驾驶
神器推荐
深度学习
AI视频
AI for Science
苹果
搜索
干货合集
LLaMA
视频生成
算力
百度
2024
Copilot
科技
应用
Anthropic
特斯拉
AI应用场景
安全
具身智能
写作
机器
字节跳动
AGI
视觉
架构
语音
DeepMind
API