华南理工大学
ICLR 2024 | 联邦学习后门攻击的模型关键层
联邦学习使多个参与方可以在数据隐私得到保护的情况下训练机器学习模型。但是由于服务器无法监控参与者在本地进行的训练过程,参与者可以篡改本地训练模型,从而对联邦学习的全局模型构成安全序隐患,如后门攻击。本文重点关注如何在有防御保护的训练框架下,对联邦学习发起后门攻击。本文发现后门攻击的植入与部分神经网络层的相关性更高,并将这些层称为后门攻击关键层。基于后门关键层的发现,本文提出通过攻击后门关键层绕过防御算法检测,从而可以控制少量的参与者进行高效的后门攻击。论文题目:Backdoor Federated Learning
4/7/2024 12:07:00 AM
机器之心
- 1
资讯热榜
标签云
人工智能
OpenAI
AIGC
AI
ChatGPT
AI绘画
DeepSeek
机器人
数据
谷歌
大模型
Midjourney
智能
模型
用户
学习
GPT
开源
微软
AI创作
图像
Meta
技术
论文
Stable Diffusion
马斯克
算法
生成式
蛋白质
芯片
Gemini
代码
神经网络
计算
腾讯
研究
Sora
AI设计
3D
开发者
英伟达
GPU
AI for Science
机器学习
场景
预测
华为
伟达
Transformer
Anthropic
模态
深度学习
百度
驾驶
AI视频
文本
苹果
搜索
神器推荐
算力
LLaMA
Copilot
安全
科技
xAI
视频生成
应用
字节跳动
干货合集
2024
人形机器人
具身智能
特斯拉
视觉
亚马逊
语音
大语言模型
AGI
Claude
AI应用场景