ET-SEED

ET-SEED:提升机器人操作泛化能力的高效等变扩散策略

本文介绍了人工智能领域顶级会议 ICLR 2025 接收论文 "ET-SEED: Efficient Trajectory-Level SE (3) Equivariant Diffusion Policy"。 该论文由北京大学前沿计算研究中心董豪老师组完成,本文有三位共同第一作者:铁宸睿本科毕业于北京大学,现为新加坡国立大学博士生,陈越是北京大学硕士生,吴睿海是北京大学博士生;通讯作者董豪是北京大学助理教授,其领导的实验室主要研究方向为具身智能、大模型、计算机视觉与强化学习。 论文链接::: SE (3) 等变的扩散策略(ET-SEED),通过将等变表示学习和扩散策略结合,使机器人能够在极少的示范数据下高效学习复杂操作技能,并能够泛化到不同物体姿态和环境中。
  • 1