蛋白质序列
Nature子刊,快10倍,基于Transformer的逆向蛋白质序列设计方法
编辑 | 萝卜皮借助深度学习的进步,蛋白质设计和工程正以前所未有的速度发展。然而,目前的模型无法在设计过程中自然地考虑非蛋白质实体。在这里,瑞士洛桑联邦理工学院(EPFL)的研究人员提出了一种完全基于原子坐标和元素名称的几何 transformer 的深度学习方法,该方法可以根据不同分子环境所施加限制的主链支架,预测蛋白质序列。使用该方法,研究人员可以以高成功率生产出高热稳定性、催化活性的酶。这有望提高蛋白质设计流程的多功能性,以实现所需的功能。该研究以「Context-aware geometric deep l
8/5/2024 3:37:00 PM
ScienceAI
- 1
资讯热榜
标签云
人工智能
OpenAI
AIGC
AI
ChatGPT
AI绘画
DeepSeek
机器人
数据
谷歌
模型
大模型
Midjourney
智能
用户
学习
GPT
开源
微软
AI创作
图像
Meta
技术
论文
Stable Diffusion
马斯克
算法
Gemini
蛋白质
生成式
芯片
代码
神经网络
腾讯
英伟达
计算
研究
Sora
AI for Science
AI设计
3D
机器学习
GPU
开发者
场景
Anthropic
华为
预测
伟达
Transformer
深度学习
模态
百度
AI视频
苹果
文本
驾驶
搜索
神器推荐
xAI
Copilot
LLaMA
人形机器人
安全
算力
大语言模型
具身智能
视频生成
应用
字节跳动
科技
Claude
干货合集
视觉
2024
AGI
特斯拉
亚马逊
架构
语音