CITE
一种多用途深度学习方法,用于CITE-seq和单细胞RNA-seq数据与细胞表面蛋白预测和插补的集成
编辑 | 萝卜皮CITE-seq 是一种单细胞多组学技术,可同时测量单细胞中 RNA 和蛋白质的表达,已广泛应用于生物医学研究,特别是免疫相关疾病和其他疾病,如流感和 COVID-19。尽管 CITE-seq 激增,但生成此类数据的成本仍然很高。尽管数据集成可以增加信息内容,但这带来了计算挑战。首先,组合多个数据集容易产生需要解决的批处理效应。其次,很难组合多个 CITE-seq 数据集,因为不同数据集中的蛋白质面板可能仅部分重叠。整合多个 CITE-seq 和单细胞 RNA 测序 (scRNA-seq) 数据集很
10/31/2022 3:30:00 PM
ScienceAI
- 1
资讯热榜
标签云
人工智能
OpenAI
AIGC
AI
ChatGPT
AI绘画
DeepSeek
机器人
数据
谷歌
大模型
Midjourney
智能
模型
用户
学习
GPT
开源
微软
AI创作
图像
Meta
技术
论文
Stable Diffusion
马斯克
算法
生成式
蛋白质
芯片
Gemini
代码
神经网络
计算
腾讯
研究
Sora
AI设计
3D
开发者
GPU
AI for Science
英伟达
机器学习
场景
预测
华为
伟达
Transformer
Anthropic
模态
深度学习
百度
驾驶
文本
AI视频
苹果
搜索
神器推荐
算力
LLaMA
科技
Copilot
xAI
视频生成
安全
应用
干货合集
字节跳动
2024
人形机器人
具身智能
特斯拉
亚马逊
视觉
语音
Claude
大语言模型
AI应用场景
AGI