无注意力大模型Eagle7B:基于RWKV,推理成本降低10-100 倍

Eagle 7B 可将推理成本降低 10-100 倍。在 AI 赛道中,与动辄上千亿参数的模型相比,最近,小模型开始受到大家的青睐。比如法国 AI 初创公司发布的 Mistral-7B 模型,其在每个基准测试中,都优于 Llama 2 13B,并且在代码、数学和推理方面也优于 LLaMA 1 34B。与大模型相比,小模型具有很多优点,比如对算力的要求低、可在端侧运行等。近日,又有一个新的语言模型出现了,即 7.52B 参数 Eagle 7B,来自开源非盈利组织 RWKV,其具有以下特点:基于 RWKV-v5 架构构

Eagle 7B 可将推理成本降低 10-100 倍。

在 AI 赛道中,与动辄上千亿参数的模型相比,最近,小模型开始受到大家的青睐。比如法国 AI 初创公司发布的 Mistral-7B 模型,其在每个基准测试中,都优于 Llama 2 13B,并且在代码、数学和推理方面也优于 LLaMA 1 34B。

与大模型相比,小模型具有很多优点,比如对算力的要求低、可在端侧运行等。

近日,又有一个新的语言模型出现了,即 7.52B 参数 Eagle 7B,来自开源非盈利组织 RWKV,其具有以下特点:

无注意力大模型Eagle7B:基于RWKV,推理成本降低10-100 倍

基于 RWKV-v5 架构构建,该架构的推理成本较低(RWKV 是一个线性 transformer,推理成本降低 10-100 倍以上);

在 100 多种语言、1.1 万亿 token 上训练而成;

在多语言基准测试中优于所有的 7B 类模型;

在英语评测中,Eagle 7B 性能接近 Falcon (1.5T)、LLaMA2 (2T)、Mistral;

英语评测中与 MPT-7B (1T) 相当;

没有注意力的 Transformer。

无注意力大模型Eagle7B:基于RWKV,推理成本降低10-100 倍

前面我们已经了解到 Eagle 7B 是基于 RWKV-v5 架构构建而成,RWKV(Receptance Weighted Key Value)是一种新颖的架构,有效地结合了 RNN 和 Transformer 的优点,同时规避了两者的缺点。该架构设计精良,能够缓解 Transformer 所带来的内存瓶颈和二次方扩展问题,实现更有效的线性扩展,同时保留了使 Transformer 在这个领域占主导的一些性质。

目前 RWKV 已经迭代到第六代 RWKV-6,由于 RWKV 的性能与大小相似的 Transformer 相当,未来研究者可以利用这种架构创建更高效的模型。

关于 RWKV 更多信息,大家可以参考「Transformer 时代重塑 RNN,RWKV 将非 Transformer 架构扩展到数百亿参数」。

值得一提的是,RWKV-v5 Eagle 7B 可以不受限制地供个人或商业使用。

在 23 种语言上的测试结果

不同模型在多语言上的性能如下所示,测试基准包括 xLAMBDA、xStoryCloze、xWinograd、xCopa。

无注意力大模型Eagle7B:基于RWKV,推理成本降低10-100 倍

无注意力大模型Eagle7B:基于RWKV,推理成本降低10-100 倍共 23 种语言

这些基准测试包含了大部分常识推理,显示出 RWKV 架构从 v4 到 v5 在多语言性能上的巨大飞跃。不过由于缺乏多语言基准,该研究只能测试其在 23 种较常用语言上的能力,其余 75 种以上语言的能力目前仍无法得知。

在英语上的性能

不同模型在英语上的性能通过 12 个基准来判别,包括常识性推理和世界知识。

无注意力大模型Eagle7B:基于RWKV,推理成本降低10-100 倍

从结果可以再次看出 RWKV 从 v4 到 v5 架构的巨大飞跃。v4 之前输给了 1T  token 的 MPT-7b,但 v5 却在基准测试中开始追上来,在某些情况下(甚至在某些基准测试 LAMBADA、StoryCloze16、WinoGrande、HeadQA_en、Sciq 上)它可以超过 Falcon,甚至 llama2。

此外,根据给定的近似 token 训练统计,v5 性能开始与预期的 Transformer 性能水平保持一致。

此前,Mistral-7B 利用 2-7 万亿 Token 的训练方法在 7B 规模的模型上保持领先。该研究希望缩小这一差距,使得 RWKV-v5 Eagle 7B 超越 llama2 性能并达到 Mistral 的水平。

下图表明,RWKV-v5 Eagle 7B 在 3000 亿 token 点附近的 checkpoints 显示出与 pythia-6.9b 类似的性能:

无注意力大模型Eagle7B:基于RWKV,推理成本降低10-100 倍

这与之前在 RWKV-v4 架构上进行的实验(pile-based)一致,像 RWKV 这样的线性 transformers 在性能水平上与 transformers 相似,并且具有相同的 token 数训练。

无注意力大模型Eagle7B:基于RWKV,推理成本降低10-100 倍

可以预见,该模型的出现标志着迄今为止最强的线性 transformer(就评估基准而言)已经来了。

参考链接:https://blog.rwkv.com/p/eagle-7b-soaring-past-transformers

相关资讯

大模型推理效率无损提升3倍,滑铁卢大学、北京大学等机构发布EAGLE

大语言模型(LLM)被越来越多应用于各种领域。然而,它们的文本生成过程既昂贵又缓慢。这种低效率归因于自回归解码的运算规则:每个词(token)的生成都需要进行一次前向传播,需要访问数十亿至数千亿参数的 LLM。这导致传统自回归解码的速度较慢。近日,滑铁卢大学、加拿大向量研究院、北京大学等机构联合发布 EAGLE,旨在提升大语言模型的推理速度,同时保证模型输出文本的分布一致。这种方法外推 LLM 的第二顶层特征向量,能够显著提升生成效率。技术报告:(支持商用 Apache 2.0): 具有以下特点:比普通自回归解码(

无损加速最高5x,EAGLE-2让RTX 3060的生成速度超过A100

AIxiv专栏是AI在线发布学术、技术内容的栏目。过去数年,AI在线AIxiv专栏接收报道了2000多篇内容,覆盖全球各大高校与企业的顶级实验室,有效促进了学术交流与传播。如果您有优秀的工作想要分享,欢迎投稿或者联系报道。投稿邮箱:[email protected][email protected]李堉晖:北京大学智能学院硕士,受张弘扬老师和张超老师指导,研究方向为大模型加速和对齐,正在寻找25届工作机会魏芳芸:微软亚研院研究员,研究方向为具身智能、图像生成和AI agents张超:

百川智能发布开源中英文大模型,多个榜单评测成绩最佳

王小川创立的百川智能发布中英文大模型,采用开源模式,可免费商用。报道 | 机器之能2023年6月15日,被称为「中国ChatGPT梦之队」的百川智能公司,推出了70 亿参数量的中英文预训练大模型——baichuan-7B。baichuan-7B不仅在C-Eval、AGIEval和Gaokao中文权威评测榜单上,以显著优势全面超过了ChatGLM-6B等其他大模型,并且在MMLU英文权威评测榜单上,大幅领先LLaMA-7B。目前baichuan-7B大模型已在Hugging Face、Github以及Model Sc