猎人
通过奖励随机化发现多智能体游戏中多样性策略行为,清华、UC伯克利等研究者提出全新算法RPG
在这篇论文中,研究者提出了一个在 reward-space 进行探索的新算法 RPG(Reward-Randomized Policy Gradient),并且在存在多个纳什均衡 (Nash Equilibrium, NE) 的挑战性的多智能任务中进行了实验验证,实验结果表明,RPG 的表现显著优于经典的 policy/action-space 探索的算法,并且发现了很多有趣的、人类可以理解的智能体行为策略。除此之外,论文进一步提出了 RPG 算法的扩展:利用 RR 得到的多样性策略池训练一个新的具备自适应能力的策
3/11/2021 2:46:00 PM
机器之心
- 1
资讯热榜
标签云
人工智能
OpenAI
AIGC
AI
ChatGPT
AI绘画
DeepSeek
机器人
数据
谷歌
模型
大模型
Midjourney
智能
用户
学习
GPT
开源
微软
AI创作
Meta
图像
技术
论文
Stable Diffusion
马斯克
算法
Gemini
蛋白质
生成式
芯片
代码
神经网络
腾讯
英伟达
计算
研究
Sora
AI for Science
AI设计
3D
机器学习
GPU
开发者
场景
Anthropic
华为
预测
伟达
Transformer
深度学习
模态
百度
AI视频
苹果
驾驶
文本
搜索
xAI
神器推荐
人形机器人
Copilot
LLaMA
具身智能
算力
安全
大语言模型
应用
视频生成
科技
字节跳动
Claude
干货合集
视觉
2024
AGI
特斯拉
亚马逊
架构
语音