猎人
通过奖励随机化发现多智能体游戏中多样性策略行为,清华、UC伯克利等研究者提出全新算法RPG
在这篇论文中,研究者提出了一个在 reward-space 进行探索的新算法 RPG(Reward-Randomized Policy Gradient),并且在存在多个纳什均衡 (Nash Equilibrium, NE) 的挑战性的多智能任务中进行了实验验证,实验结果表明,RPG 的表现显著优于经典的 policy/action-space 探索的算法,并且发现了很多有趣的、人类可以理解的智能体行为策略。除此之外,论文进一步提出了 RPG 算法的扩展:利用 RR 得到的多样性策略池训练一个新的具备自适应能力的策
3/11/2021 2:46:00 PM
机器之心
- 1
资讯热榜
标签云
AI
人工智能
OpenAI
AIGC
模型
ChatGPT
DeepSeek
谷歌
AI绘画
机器人
数据
大模型
Midjourney
开源
Meta
智能
微软
用户
AI新词
GPT
学习
技术
智能体
马斯克
Gemini
图像
Anthropic
英伟达
AI创作
训练
论文
LLM
代码
算法
芯片
Stable Diffusion
AI for Science
腾讯
苹果
Agent
Claude
蛋白质
开发者
生成式
神经网络
xAI
机器学习
3D
人形机器人
研究
生成
AI视频
百度
大语言模型
Sora
工具
GPU
具身智能
RAG
华为
计算
字节跳动
AI设计
搜索
AGI
大型语言模型
视频生成
场景
深度学习
架构
DeepMind
视觉
预测
Transformer
伟达
编程
生成式AI
AI模型
特斯拉
亚马逊